Titre: Modélisations 3D_HM, 3D_HHM, 3D_THM, 3D_THH, 3D_TH[...]
 Date: 07/02/2011 Page: 1/7

 Responsable: Sylvie GRANET
 Clé: U3.14.07 Révision: 5501

Organisme(s): EDF-R&D/AMA

Manuel d'Utilisation Fascicule U3.14 : Eléments finis mécaniques 3D Document U3.14.07

Modélisations 3D_HM, 3D_HHM, 3D_THM, 3D_THH, 3D_THHM

Résumé:

Ce document décrit pour les modélisations 3D_HM, 3D_HHM, 3D_THM, 3D_THH et 3D_THHM:

- les degrés de liberté portés par les éléments finis qui supportent la modélisation,
- les mailles supports afférentes,
- les matériaux et chargements supportés,
- les options de calculs pour les matrices élémentaires et les post traitements,
- les possibilités non linéaires ainsi que les options de la mécanique de la rupture si elles existent.

Les modélisations 3D_HM, 3D_HHM, 3D_THM, 3D_THH, 3D_THHM, (Phénomène : MECANIQUE) correspondent à des éléments finis dont les mailles supports sont volumiques.

 Titre: Modélisations 3D_HM, 3D_HHM, 3D_THM, 3D_THH, 3D_TH[...]
 Date: 07/02/2011 Page: 2/7

 Responsable: Sylvie GRANET
 Clé: U3.14.07 Révision: 5501

1 Discrétisation

1.1 Degrés de libertés

DX, DY et DZ désignent les degrés de libertés de déplacement.

PRE1 et PRE2 désignent deux degrés de liberté de pression, dont la signification précise dépend des lois de comportement utilisées. TEMP désigne la température.

Elément fini	Degrés de liberté
3D_HM	DX, DY, DZ, PRE1
3D_HHM	DX, DY, DZ, PRE1, PRE2
3D_THM	DX, DY, DZ, PRE1, TEMP
3D_THH	PRE1, PRE2, TEMP
3D_THHM	DX, DY, DZ, PRE1, PRE2, TEMP

1.2 Maille support des matrices de rigidité

Les mailles support des éléments finis ne peuvent être que des héxaèdres. Les éléments sont iso-paramétriques.

Modélisatio n	Maille	Interpolation	Remarques
3D_HM	неха20	Serendip 20 nœuds en déplacement tri-linéaire sur 8 nœuds en pression	La pression d'un nœud milieu est la moyenne des nœuds sommets du segment
3D_HHM	HEXA20	Serendip 20 nœuds en déplacement tri-linéaire sur 8 nœuds en pression	Les pressions d'un nœud milieu sont les moyennes des nœuds sommets du segment
3D_THM	HEXA20	Serendip 20 nœuds en déplacement tri-linéaire sur 8 nœuds en pression et température	La pression et la température d'un nœud milieu sont la moyenne des nœuds sommets du segment
3D_THH	HEXA20	Tri-linéaire sur 8 nœuds en pression et température	Les pressions et la température d'un nœud milieu sont la moyenne des nœuds sommets du segment
3D_THHM	HEXA20	Serendip 20 nœuds en déplacement tri-linéaire sur 8 nœuds en pression et température	Les pressions et la température d'un nœud milieu sont la moyenne des nœuds sommets du segment

Titre: Modélisations 3D HM, 3D HHM, 3D THM, 3D THH, 3D TH[...]

Date: 07/02/2011 Page : 3/7 Responsable : Sylvie GRANET Clé: U3.14.07 Révision: 5501

Maille support des chargements 1.3

Modélisatio n	Maille	Interpolation	Remarques
3D_HM	QUAD8	Serendip 8 nœuds en déplacement bi-linéaire sur 4 nœuds en pression et température	La pression d'un nœud milieu est la moyenne des nœuds sommets du segment
3D_HHM	QUAD8	Serendip 8 nœuds en déplacement bi-linéaire sur 4 nœuds en pression	Les pressions d'un nœud milieu sont les moyennes des nœuds sommets du segment
3D_THM	QUAD8	Quadratique en déplacement linéaire en pression et température	La pression et la température d'un nœud milieu sont la moyenne des nœuds sommets du segment
3D_THH	QUAD8	Bi-linéaire sur 4 nœuds en pression et température	Les pressions et la température d'un nœud milieu sont la moyenne des nœuds sommets du segment
3D_THHM	QUAD8	Serendip 8 nœuds en déplacement bi-linéaire sur 4 nœuds en pression et température	Les pressions et la température d'un nœud milieu sont la moyenne des nœuds sommets du segment

Signification des symboles

•	correspond à une fonctionnalité disponible
	correspond à une fonctionnalité qui pourrait exister mais non disponible
	actuellement
Nom de	correspond à un test mettant en œuvre la fonctionnalité

Matériaux supportés 3

DEFI_MATERI AU	3D_HM	3D_HHM	3D_THM	3D_THH	3D_ТННМ
THM_LIQU	SSNV134C	WTNV112 B	WTNV109A	•	•
THM_GAZ	SSNV134C	WTNV122 B	WTNV109A	•	•
THM_VAPE_GA Z		WTNV112 B		•	•
THM_INIT	SSNV134C	WTNV112 B	WTNV109A	•	•
THM_DIFFU	SSNV134C	WTNV112 B	WTNV109A	•	•

 Titre: Modélisations 3D_HM, 3D_HHM, 3D_THM, 3D_THH, 3D_TH[...]
 Date: 07/02/2011 Page: 4/7

 Responsable: Sylvie GRANET
 Clé: U3.14.07 Révision: 5501

ELAS	SSNV134C	WTNV112	WTNV109A	•
		В		
CJS	SSNV134C	•	•	•
ELAS_THM			WTNV115A	•
SURF_ETAT_S			WTNV116A	
ATU				
CAM_CLAY_TH			WTNV117A	
M				
SURF_ETAT_N				•
$C \Lambda T$				

Titre: Modélisations 3D HM, 3D HHM, 3D THM, 3D THH, 3D TH[...] Date: 07/02/2011 Responsable : Sylvie GRANET

Page : 5/7 Clé: U3.14.07 Révision: 5501

Chargements supportés

4.1 AFFE_CHAR_MECA

	Tous les éléments de cette note	Remarques
DDL_IMPO	SSNV134C	
FACE_IMPO	SSNV134C	
LIAISON_DDL	•	
LIAISON_OBLIQUE	•	
LIAISON_GROUP	•	
LIAISON_UNIF	•	
LIAISON_SOLIDE	•	
LIAISON_ELEM	•	
LIAISON_CHAM_NO	•	
PESANTEUR	•	
ROTATION		
FORCE_NODALE	•	
FORCE_FACE		
FORCE_ARETE		
FORCE_INTERNE	•	
PRES_REP	SSNV134C	
EPSI_INIT		
FLUX_THM_REP	WTNV114C	
PRES_CALCULEE	•	
EPSA_CALCULEE		

Titre: Modélisations 3D_HM, 3D_HHM, 3D_THM, 3D_THH, 3D_TH[...]

Date: 07/02/2011 Page : 6/7 Responsable : Sylvie GRANET Clé: U3.14.07 Révision: 5501

4.2 AFFE_CHAR_MECA_F

	Tous les éléments de cette note	Remarques
DDL_IMPO	•	
FACE_IMPO	•	
LIAISON_DDL	•	
LIAISON_OBLIQUE	•	
LIAISON_GROUP	•	
LIAISON_UNIF	•	
LIAISON_SOLIDE	•	
FORCE_NODALE	•	
FORCE_FACE	•	
FORCE_ARETE		
FORCE_INTERNE	•	
PRES_REP	•	
EPSI_INIT		
FLUX_THM_REP	•	

Possibilités non-linéaires

5.1 STAT_NON_LINE

_COMP_INCR	RELATION	3D_HM	3D_HHM	3D_THM	3D_THH	3D_THHM
	KIT_HM	SSNV13				
		4C				
	KIT HHM		WTNV112			
	_		В			
	KIT THM			WTNV109		
	_			A		
	KIT_THH				•	
	KIT THHM					•

Calculs de matrices élémentaires 6

OPTIONS		Remarques
`RIGI_MECA_TAN G'	•	
`FULL_MECA'	•	
'RAPH_MECA'	•	
`FORC_NODA'	•	Si FORC_NODA est appelé à partir de REAC_NODA seuls les termes de mécanique sont calculés

Titre: Modélisations 3D HM, 3D HHM, 3D THM, 3D THH, 3D TH[...] Date: 07/02/2011 Responsable : Sylvie GRANET

Page : 7/7 Clé: U3.14.07 Révision: 5501

Post-traitement du calcul 7

7.1 Options CALC_ELEM

OPTIONS	Tous les éléments de cette note	Remarques
'SIEF_ELNO'	SSNV134C	
'VARI_ELNO'	•	
'EPSI_ELNO'		
'EPST ELGA'		

Options CALC_NO 7.2

	Tous les éléments de cette note	Remarques
'FORC_NODA'	•	Si FORC_NODA est appelé à partir de REAC_NODA seuls les termes de mécanique sont calculés
'REAC_NODA'	•	Seuls les termes de mécanique sont calculés