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ABSTRACT 
This paper presents a new simplified method for assessing the liquefaction potential of soils based on geotechnical, 
geometrical and seismic load parameters. A relatively large database consisting of CPT, SPT and Vs measurements and 
field liquefaction performance observations of historical earthquakes is analyzed. This database is used to construct a 
nonlinear environment where the occurrence and nonoccurrence of liquefaction can be predicted using Machine 
Learning tools. The successfully trained and tested scheme is composed of i) an artificial neural network to map some 
index properties to resistance values, ii) a neurofuzzy system to estimate the liquefaction occurrence and a 
multidimensional fuzzy-liquefaction index and iii) a regression tree to generate or complete the seismic load information. 
The data points, measured and estimated, collectively define the liquefaction boundary surface, the fuzzy limit state 
nonlinear-function. Based on this newly developed cognitive method, intelligent analyses of the cases in the database 
are conducted using a simple mapping approach. The Machine Learning models, no necessarily expressed as functions, 
provide a simple means for knowledge-based evaluation of the liquefaction potential. The newly developed simplified 
method compares favorably to a widely used existing methods. 
 
RÉSUMÉ 
Ce document présent une nouvelle simplifiée méthode pour évaluer la résistance de liquéfaction des sols basée dans 
des paramètres géotechniques, géométriques et de charge sismique. Une base de donnés relativement large constituée 
par des mesures CPT, STP et Vs et des observations de performance de liquéfaction de terrain des séismes a été 
analysée. Cette information est utilisée pour construire un environnement pas-linéal où l’occurrence et la non-occurrence 
de la liquéfaction peut été prévue en utilisant des outils de Machine Learning. Le schème traîné avec de succès et 
prouvé est composé de i) un réseau de neurones artificiel pour tracer quelques propriétés index à valeurs de résistance, 
ii) un système neuro-brouillé pour estimer l’occurrence de liquéfaction et un index brouillé-multidimensionnel de 
liquéfaction et iii) un arbre de régression pour générer ou compléter l’information de la charge sismique. Les coordonnés, 
mesurées et estimées, collectivement défient la surface frontière de liquéfaction non-linéale multidimensionnelle, la 
fonctionne brouillé d’état limite. En se basant dans cette récemment développé méthode, des analyses intelligentes des 
cas dans la base de donnés ont été réalisés en utilisant une approximation de mapping simple. Les machine learning 
modéles, pas nécessairement expressés comme fonctionnes, donnent des moyens simples pour l’évaluation, en se 
basant dans la connaissance du potentiel de liquéfaction. La récemment développée simplifiée méthode est comparable 
à des autres méthodes déjà existantes et largement utilisées. 
 
 
 
1 INTRODUCTION 
 
Over the past forty years, scientists have conducted 
extensive research and have proposed many methods to 
predict the occurrence of liquefaction. In the beginning, 
undrained cyclic loading laboratory tests had been used to 
evaluate the liquefaction potential of a soil (Castro et al., 
1982) but due to difficulties in obtaining undisturbed 
samples of loose sandy soils, many researchers have 
preferred to use in situ tests (Seed et al., 1983).  

In a semi-empirical approach the theoretical 
considerations and experimental findings provides the 
ability to make sense out of the field observations, tying 
them together, and thereby having more confidence in the 
validity of the approach as it is used to interpolate or 
extrapolate to areas with insufficient field data to constrain 
a purely empirical solution.  

Empirical field-based procedures for determining 
liquefaction potential have two critical constituents: i) the 
analytical framework to organize past experiences, and ii) 
an appropriate in-situ index to represent soil liquefaction 
characteristics. The original simplified procedure (Seed 

and Idriss 1971) for estimating earthquake-induced cyclic 
shear stresses continues to be an essential component of 
the analysis framework. The refinements to the various 
elements of this context include improvements in the in-
situ index tests (e.g., SPT, CPT, BPT, Vs), and the 
compilation of liquefaction/no-liquefaction cases. 

The objective of the present study is to produce a 
simplified machine-learning ML method for evaluating 
liquefaction potential. ML, a branch of cognitive 
computation, is a scientific discipline concerned with the 
design and development of algorithms that allow 
computers to evolve behaviours based on empirical data, 
such as from sensor data or databases. Data can be seen 
as examples that illustrate relations between observed 
variables. A major focus of ML research is to 
automatically learn to recognize complex patterns and 
make intelligent decisions based on data; the difficulty lies 
in the fact that the set of all possible behaviours given all 
possible inputs is too large to be covered by the set of 
observed examples (training data). Hence the learner 
must generalize from the given examples, so as to be 
able to produce a useful output in new cases. 



In this investigation, and following the findings of a 
previous work (García et al., 2010), some ML tools 
(Neural Networks NNs, Fuzzy Logic FL, and Regression 
Trees RTs) are used to evaluate liquefaction potential and 
to find out what parameters control liquefaction 
occurrence including: earthquake parameters, soil 
properties, and stress conditions. For each of these 
parameters, the emphasis has been on developing 
relations that capture the essential physics while being as 
simplified as possible. The proposed cognitive 
environment permits an improved-simple definition of i) 
the loading to a soil induced by an earthquake (the cyclic 
stress ratio CSR), and ii) the resistance of the soil to 
triggering of liquefaction (the cyclic resistance ratio CRR).  
 
2 LIQUEFACTION POTENTIAL- AN OVERVIEW 
 
The factor of safety FS against the initiation of liquefaction 
of a soil under a given seismic loading is commonly 
described as the ratio of cyclic resistance ratio (CRR), 
which is a measure of liquefaction resistance, over cyclic 
stress ratio (CSR), which is a representation of seismic 
loading that causes liquefaction, symbolically, 
FS=CRR/CSR. The reader is referred to Seed and Idriss 
(1971), Youd et al. (2001), and Idriss and Boulanger 
(2004) for a historical perspective of this approach. The 
term CSR 
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is function of the vertical total stress of the soil �
� at the 
depth considered, the vertical effective stress �
�

� , the 
peak horizontal ground surface acceleration ����, a 
depth-dependent shear stress reduction factor �� 
(dimensionless), a magnitude scaling factor ��� 
(dimensionless). For CRR, different in situ-resistance 
measurements and overburden correction factors are 
included in its determination; both terms operate 
depending of the geotechnical conditions. Details about 
the theory behind this topic in Idriss and Boulanger,(2004) 
and Youd et al. (2001). 
 
2.1 Correction Framework for Semi-empirical 

Procedures 
 
Talking about CSR, the stress reduction coefficient 
accounts for the flexibility of the soil column (e.g., �� � 1 
corresponds to rigid body behavior). The factor of 0.65 is 
used to convert the peak cyclic shear stress ratio to a 
cyclic stress ratio that is representative of the most 
significant cycles over the full duration of loading. The 
values of CSR calculated using equation (1) pertain to the 
equivalent uniform shear stress induced by an earthquake 
of magnitude � (moment magnitude). It has been 
customary to adjust these values so that they would 
pertain to ground motions generated by an earthquake 
having a � � 7.5. 

On the other hand, for CRR, the purpose of the 
overburden normalization is to obtain quantities that are 
independent of �
�

� , and thus more uniquely relate to the 
sand's relative density. The correlation of the cyclic stress 
ratio required to cause liquefaction (CRR) to in-situ 

resistance is thus directly affected by the choice of the 
correction expression, as has been illustrated for many 
researchers (Idriss and Boulanger, 2004). 

The correction factors have been included in the 
conventional analytical frameworks to organize and to 
interpret the historical data. The correction factors 
improve the consistency between the 
geotechnical/seismological parameters and the observed 
liquefaction behavior, but they are a consequence of a 
constrained analysis space: a 2D plot [CSR vs CRR] 
where regression formulas (simple equations) intend to 
relate complicated nonlinear/multidimensional information. 
In this investigation the ML methods are applied to 
discover unknown, valid patterns and relationships 
between geotechnical, seismological and engineering 
descriptions using the relevant available information of 
liquefaction phenomena (expressed as empirical prior 
knowledge and/or input-output data). These ML 
techniques “work” and “produce” accurate predictions 
based on few logical conditions and they are not restricted 
for the mathematical/analytical environment. The ML 
techniques establish a natural connection between 
experimental and theoretical findings. 
 
3 EVALUATION OF THE LIQUEFACTION 

POTENTIAL: A ML REFORMULATION 
 
The study of the liquefaction is made based on 
information that is incomplete, often ambiguous, plagued 
with imperfect or inexact knowledge, and it involves the 
handling of large sets of competing constraints that can 
tolerate close enough solutions. The outcome (evaluation 
of the liquefaction potential) depends on many inputs and 
their statistical variations, and there is no clear logical 
method for arriving at the answer. The seismic-related 
phenomena are inherently ill-posed and ill-conditioned so 
they cannot be satisfactorily addressed using the 
traditional computational paradigms. 

Following the format of the simplified method 
pioneered by Seed and Idriss (1971), in this investigation 
a nonlinear and adaptative limit state (a fuzzy-boundary 
that separates liquefied cases from nonliquefied cases) is 
proposed (Figure 1).  

 
Figure 1. The schematic view of the nonlinear-

multidimensional limit state: i) the traditional graph, ii) the 
proposed ML surface 



3.1 Data base used in the re-formulation 
 
The database used in the present study was constructed 
using the information included in Table 1. The information 
was compiled by Aghda et al., (1988), Juang et al., 
(1999), Juang (2003), Baziar, (2003) and Chern and Lee 
(2009). A summary of the parameters included in these 
datasets is presented in Table 1. From the 1035 patterns, 
the contradictory cases and duplicated events have been 
removed. The final number of patterns is around 400 
different cases, 70% of them are liquefied cases and the 
other 30% cases are nonliquefied ones.  

The cases are derived from CPT, SPT and Vs 
measurements and different seismic conditions (U.S., 
China, Taiwan, Romania, Canada and Japan). The soils 
types ranges from clean sand and silty sand to silt 
mixtures (sandy and clayey silt). Diverse geological and 
geomorphological characteristics are included. The reader 
is referred to the citations in Table 1 for details. 
 

Table 1. Databases used in this study 
S
e
t 

Input Parameters Number 
.of 

Patterns 

Ref. 

    
A Z, ZNAF; H, Soil Class, 

Geomorphological units, 

Geological units, Site 

amplification, amax 

56 Fatemi-

Agdha et 

al., 1988 

B Z, qc, Fs, σ0, σ0
’
,     amax, M 21 Juang et 

al., 1999 

C Z, qc, Fs, σ0, σ0
’
,     amax, M 242 Juang, 

2003 

D D50, amax, σ0
’ 
, σ0 , M, Fs, qc, 

SPT, Z 

170 Baziar, 

2003 

E 
 

M, σ0, σ0
’
,qc, amax 466 Chern and 

Lee, 2009 

F ZNAF, Z, H, σ0, σ0
’
, Soil 

Class, Vs 

80 Andrus and 

Stokoe, 

1997; 2000 

                                Total:   1035  

Symbology: Z: top of layer depth, ZNAF: Water table depth, H:layer 

thickness, amax: max acceleration PGA, qc: cone penetration resistance, 

Fs: fine content, σ0: total vertical stress, σ0
’
: effective vertical stress, M: 

magnitude, D50: 50% part. Diameter, SPT: standard penetration test 

values, Vs: shear wave velocity. 

 
3.2 Reformulation of CSR/CRR 
 
There are many examples that show that biological 
machinery is capable of providing satisfactory solutions to 
ill-structured problems with remarkable ease and 
flexibility. Between these attempts, some NNs have been 
developed to determine the liquefaction potential but no 
significant results have been achieved because of the 
conflicting and redundant data and the difficult for 
detecting what examples are really contradictory or 
superfluous.  

For example, the back-propagation algorithm (for 
training neural networks) is not flexible enough for 
prediction purposes, particularly when the data set 

contains inconsistent information as in the liquefaction 
database (the minimum-error searching diverges). In view 
of these shortcomings, it was deemed necessary to 
develop an alternative procedure. In this paper is 
proposed a neurofuzzy system. 

The basic idea in this reformulation is merging fuzzy 
systems and neural networks to design a computing 
scheme that uses the FL to represent the data in an 
interpretable manner and the profits from the learning 
ability of a NN to optimize the empirical knowledge.  

This blending constitutes a decoded model that is 
capable of learning and using problem-specific prior 
knowledge. The new formulation uses subjective 
categories to evaluate the CSR/CRR items and to derive 
the conclusion according to the experience. 

The seismic load that causes liquefaction is expressed 
thorough eleven items that were selected from a 
comprehensive review of the literature, past experience, 
and engineering judgment. Each item has 2-3 fuzzy-
labels. The seismic and geotechnical characteristics 
constitute the mesh where the different positions of CSR 
can be determined.  

Once the variables (input/output) were chosen and the 
fuzzy sets to represent these variables were picked, the 
fuzzy rules and the membership functions are modified by 
the Takagi-Sugeno neurofuzzy process (see Sugeno and 
Kang, 1998; and Takagi and Sugeno 1985), resulting a 
fuzzy IF-THEN rules that model the qualitative analyses. 
The typical values of the labels as the if-then rules are 
changed in the neuro-training phase until the minimum 
difference between the evaluated and the observed 
behavior is achieved. The schematic representation of the 
liquefaction neurofuzzy model is shown in Figure 2. In the 
initial fuzzy system the following input linguistic variables 
were booked:  

 

• Geotechnical – “qc_Cone”, “SPT-N”, 
“Velo_Vs”,  “Volumetric_W”, “Soil_Class”, 

“Esf_total”, “Esf_effec”, 

• Geometrical – “Layer_H”, “ZNAF”, “ZTOP” 
• Sesimic Load – “Magnitude_M”, “Amax”, 

“Signal(t)”, “Signal(f)” 
 

The resistance measurements “qc_Cone”/ 
“SPT_N”/”Velo_Vs” and the volumetric weight 
“Volumetric_W”, are opened for learning, the training 
process will modify the membership functions and the 
fuzzy rules defined by the experts until the system 
response is optimized, which is achieved when the 
system obtained minimizes the error mapping (observed 
vs estimated). The soil classification “Soil_Class”, total 
and effective stresses “Esf_total”/“Esf_effec” and the 
Geometrical variables – “Layer_H”, “ZNAF”, “ZTOP” are not 
opened for learning, they are control labels that 
characterize and help to relate the different databases. 

 



 

 

Figure 2. Liquefaction Potential Neurofuzzy Model 



The seismic definition can be done through one of two 
categories: i) raw nominal values “Magnitude_M” and 
“A_max” or ii) a regression tree that estimates the peak 
ground acceleration PGA for different magnitudes, 
epicentral distances and focal depths, as being required in 
the analysis. In a posterior stage of this ML model (not 
presented here), the analyst will be able to load an 
acceleration vector (time or frequency domain, 
“Signal(t)”/“Signal(f)”) to take into account the 
time/frequency/intensity event distinctiveness. Finally, the 
output variable is “Liquefies?” and it can take the linguistic 
values “YES”/”NO”. 
By definition, if the factor of safety against triggering 
liquefaction (FS=CRR/CSR) is less than 1, the occurrence 
of liquefaction is “predicted”, no liquefaction is forecasting 
if FS.≥1. But using ML there are no simple equations for 
determining the nominal values of CRR and CSR and the 
FS. The resulting ML functions are multidimensional and 
nonlinear and a simple ratio between these two 
components is not adequate. In this investigation a fuzzy-
liquefaction index LIF is proposed for a lexical description 
of the liquefaction potential of the soils. Using the resulting 
rules that optimize the “IF CSR=X and CRR=Y, THEN the 
soil Liquefies?→YES”/”NO” mapping, a fuzzy linguistic 
conclusion, the index LIF, is generated (Figure 3).  

 
3.3 ML-data analysis 
 
The numerical and categorical vectors are loaded into the 
inputs grid. The patterns in each mesh (geotechnical, 
geometrical and seismic) are fuzzyfied and the premises 
are constructed automatically. Warning messages are 
displayed about missed values or redundant/conflicting 
sentences and they can be estimated mechanically, the 
former, or removed, the latter. The rule interpretation is 
done by the Takagi-Sugeno-inference mechanism using 
the crisp inputs and outputs. It implements a nonlinear 
mapping from the input space to the output space. This 
mapping is achieved by a number of IF-THEN rules, each 
of which describes the local behavior of the mapping. In 
particular, the antecedent of a rule (statements before the 
conclusion THEN) defines a fuzzy region in the input 
space, while the consequent (conclusion, statement after 
THEN) is the output in the fuzzy region. For the ML 
scheme, a fuzzy IF-THEN rule with three groups of 
antecedents is written as  

 

 

 

When a prediction task is posed to the ML scheme, 
the rules Ri activated (significant for the specific inputs) 
are partially applied and the result of the inference is a 
combination of their propositions i. The labels for 
describing “Liquefies?” are sufficient to express the 
variations of the liquefaction potential between the whole 
range of soil materials, geometries and seismic loads.  

 
3.4 The evaluation of recognition 
 
An example of the results obtained during testing with 
“unseen” data is presented in Figure 4. It is observed that 
the neurofuzzy system is capable of predicting the in situ 
measurements with a high degree of accuracy. 
Furthermore, and if the neurofuzzy results are compared 
with those obtained by commonly used semi-empirical 
methods (not shown here because of space limitations), 
we can conclude that the neurofuzzy system yields safety 
predictions using a significantly less expensive (faster and 
easier to get) seismic, geotechnical and geometrical 
descriptions.  

An evaluation of the predicted “Liquefies?” versus the 
known output is shown in Figure 5. The goodness of this 
fit is reflected by the coefficient of determination is above 
0.9. The overall uncertainty of this ML model, including 
additional error from the trained neural network, is 
estimated to be less than 10%. It should be noted that the 
idea of introducing the correction parameters in the 
traditional models, originated from concepts of equivalent 
resistances, seismic intensities, or soil classes, it is 
merely an intermediate adjustment derived from the 
conventional regression processes; no physical meaning 
is implied herein.  

The CRR and CSR are not explicitly calculated when 
using neurofuzzy techniques; the inferred values are 
compared in the nonlinear environment and the behavior 
rules discovered are used to locate them in the complex-
fuzzy space. Although in ML models it is not possible to 
locate a 2D position and to define a distance from the limit 
function (a line in a XY plot), the intelligent-empirical 
expression (via a fuzzy index) translates the 
multidimensional conditions that originates the output 
“Liquefies?YES/Liquefies?NO” into a linguistic label that 
better relates the phenomena with the human concept of 
risk.  

A prediction is considered a success if it agrees with 
the field observation. The success rate in predicting 
liquefied cases using the empirical model developed is 
93%, whereas the success rate in predicting nonliquefied 
cases is 88%. The overall success rate is 91% for all 
cases in the database. The empirical method developed is 
shown to be quite accurate. In fact, it is approximately 
more accurate as the more sophisticated published NNs 
models (Juang et al., 2003; Aghda et al., 1998; Baziar and 
Nilipour, 2003). The ML model is much easier to use and 
it helps better to understand the conditions that makes a 
soil to trigger liquefaction, also it is very flexible and 
adaptative .The proposed ML method can be calibrated 
so that the meaning of the fuzzy-index calculated can be 
understood within the framework of probability. 

 

IF
Geotechnical:

qc_Cone is LOW and Volumetric_W is MEDIUM

and Soil_Class is SILTY_SAND and Esf_total is.. 
and Esf_efec is …

Geometrical:

Layer_H= 10 m and ZNAF =… and ZTOP=…
Seismic Load:

Magnitude_M= 6.2  and A_max= …
THEN

Liquefies? is NO



 

 

Figure 3. Concepts, labels, membership functions and their dynamic range 



 

 

Figure 4. Neurofuzzy model: a calaculation example  



 
 

Figure 5. Work stage of ML model : predictions on “unseen” cases 
 



4 CONCLUSIONS  
 
Machine learning is used in the study to evaluate 
liquefaction potential subjected to earthquake loadings. To 
achieve this object, a total 400 limit state patterns were 
analyzed. These data patterns are then used to construct 
the cyclic stress ratio CSR/cyclic resistance ratio CRR 
fuzzy-space (concepts, labels, and categories). 
Subsequently, Takagi-Sugeno inference is used to 
determine a set of behavior rules that relates the inputs to 
the output. The computed liquefaction resistance is 
compared with earthquake induced cyclic stress to decide 
whether liquefaction is occurred or not. Finally, based on 
this empirical-intelligent scheme, a fuzzy liquefaction 
index can be computed, the system is designed to give an 
additional definition through a linguistic label. The 
proposed simplified procedure is illustrated with the help 
of case studies. From the comparison results, it is found 
that the developed system may provide a very simple and 
accurate method with success rate as high as nearly 90% 
for assessing liquefaction potential.  

Machine learning represents a powerful alternative in 
predicting the liquefaction potential and more accurate 
results than the conventional methods are obtained. No 
calibration and normalization with respect to the other 
parameters is needed. Also the relative importance of the 
effective parameters can be compared. Using normalized 
and calibrated parameters make the data set noisy and 
are not suitable for the training process. In other words, 
ML has the ability to find the relations between basic 
parameters of a multifactor problem, helping to achieve 
better results.  
 
REFERENCES 
 
Baziar, M. H. and Nilipour, N. 2003. Evaluation of 
liquefaction potential using neural-networks and CPT 
results. Soil Dynamics and Earthquake Engineering, 23(7) 
631-636. 
 
Boulanger, R. and Idriss, I.M. 2004. State normalization of 
penetration resistance and the effect of overburden stress 
on liquefaction resistance. Proc. 11th International Conf. 
on Soil Dynamics and Earthquake Engineering and 3

rd
 

International Conference on Earthquake Geotechnical 
Engineering, Univ. of California, Berkeley, CA. 
 
Castro, G., Poulos, S.J., France, JW., Enos, J.L. 1982. 
Liquefaction induced by cyclic loading. Winchester, Mass: 
Geotechnical Engineers Inc. 
 
Chern, S. and Lee, C. 2009. CPT-based simplified 
liquefaction assessment by using fuzzy-neural network. 
Journal of Marine Science and  Technology, 17(4) 326-
331 
 
Fatemi-Agdha, S.M., Teshnehlab, M., Suzuki, A., 
Akiyoshi, T., and Kitazono, Y. 1998. Liquefaction potential 
assesment using multilayer artificial neural network. J. 
Sci. I.R. Iran, 9(3) 
 
 

Garcia, S.R., Romo, M.P., and Ovando-Shelley, E. 2010. 
ARELI : Árbol de Regresión para Estimar el Potencial de 
Licuación. Memorias del Congreso de Mecánica de 
Suelos, Acapulco, Mexico.  
 
Juang, C. H., Chen, C. J., and Tien, Y. M. 1999. 
Appraising cone penetration test based liquefaction 
resistance evaluation methods: Artificial neural networks 
approach. Canadian Geotechnical Journal, 36(3) 443-454. 
 
Juang, C. H., Yuan, H. M., Lee, D. H., and Lin  2003, P. 
S., “Simplified cone penetration test-based method for 
evaluating liquefaction resistance of soils,” Journal of 
Geotechnical and Geoenvironmental Engineering, Vol. 
129, No. 1, pp. 66-80. 
 
Seed, H. B. and Idriss, I. M.1971. Simplified procedure for 
evaluation soil liquefaction potential. Journal of the Soil 
Mechanics and Foundations ASCE, 97 (9), 1249-1273  
 
Sugeno M, and Kang G.T. 1998. Structure identification of 
fuzzy model. Fuzzy Sets Systems. 23(15) 33. 
 
Takagi T., Sugeno M. 1985. Fuzzy identification of 
systems and its applications to modeling and control. 
IEEE Trans Syst, Man Cybernet. 15(1)116–132. 
 
Youd ,T.L., Idriss, I.M. , Andrus, R.D., Arango, I., Castro, 
G., Christian, J.T., Dobry, R., Liam F., Harder, L.F., Hynes 
M.E., Ishihara, K., Koester, J.P., Liao,S.S.C., Marcuson 
III, W.F., Martin, G.R., Mitchell, J.K., Moriwaki, Y., Power, 
M.S., Robertson, P.K., Seed, R.B., and Stokoe, K.H. 
2001. Liquefaction resistance of soils. Summary report 
from the 1996 NCEER and 1998 NCEER/NSF workshops 
on evaluation of liquefaction resistance of soils. J. 
Geotech. Geoenviron. Eng., 127(10), 817–833. 
 


