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ABSTRACT 
In this study, the fragmentation of gravels is evaluated by uniaxial compression tests and by numerical and theoretical  
analyses. The Discrete Element Method (DEM) was used for the numerical analysis. Fractal theory was used to interpret 
the laboratory results. The laboratory and the DEM results indicated that the gravel under compression developed force 
chains in order to resist the uniaxial compressive loads. When the intensity of the force chains exceeded the uniaxial 
compressive strength of the individual pieces of gravel, the gravel broke into smaller pieces. The resulting grain size 
distribution was found to be fractal in nature. 
 
RESUMEN 
En este estudio, el fracturamiento de gravas es evaluado usando ensayos the compresión unidireccional, por 
simulaciones numéricas, y por un analisis teórico.  Las simulaciones numéricas usan el Metodo de Elementos Discretos 
(DEM). La teoría de los fractales fue usada pra interpretar los resultados de laboratorio. Los experimentos y las 
simulaciones numéricas indicaron que la grava bajo compresión desarrollo cadenas de fuerza entre las particulas. 
Estadas cadenas de fuerza resisten la fuerza de compresión inducida a la grava. Cuando la intensidad de las cadenas 
de fuerza excede la resistencia a la compresión de la grava, esta se quiebra. La distribución del tamaño de granos 
despues de la compresión resulta ser fractal.  
 
 
1 INTRODUCTION 
 
Granular materials forming part of civil engineering 
structures such as rockfill dams and the granular base in 
pavement systems are subjected to sustain compressive 
stresses resulting from gravity and traffic loads 
respectively. As a result of these compressive stresses, 
the granular materials break into pieces of different sizes. 
Thus, the original engineering properties with which the 
rockfill dam or the base of a pavement structure was 
designed (i.e., hydraulic conductivity, shear strength, 
elastic moduli) will change during its engineering life.  
Changes in the original engineering properties could 
affect the stability of the structures and could make them 
unsafe. The size distribution of the broken granular 
material has been found to be fractal in nature (McDowell, 
et al., 1996; Perfect, 1997). However, there is not a clear 
explanation to date about the mechanisms that cause the 
granular materials to develop a fractal size distribution. In 
the present study, a test designed to crush granular 
materials and its simulation using the Discrete Element 
Method (DEM) are developed to understand the 
mechanisms involved with the development of a fractal 
fragmentation by granular materials. 
 
 
2      LABORATORY EXPERIMENTS 
 
2.1   Materials and Equipment Used 
 
For the laboratory experiments round and angular gravel 
were used. The angular gravel had a Krumbein’s 

roundness number R = 0.5, and for the rounded gravel, R 
= 0.8 (Krumbein, 1941). The average diameter for both 
gravels, d50= 7 mm, and their specific gravity, Gs,  was 
equal to  2.67. Both gravels were classified as GP using 
the Unified Soil Classification System. 
     A uniaxial compression experiment was carried out in 
a tube with a 5 cm interior diameter and a height of 14 
cm. The gravel filled the tube up to a height  equal to 10 
cm (Figure 1). For meaningful test results, it is found 
 
 

 
 
          Figure 1. Equipment used to crush the gravels 
 
 
necessary to maintain a ratio of sample diameter to the 
maximum particle size of approximately 6:1 or greater. 
The tube was set up right with a steel plug at the bottom 



on which the gravel rest and a 2.0 kg piston head 
pressing against the top of the gravel. The objective of 
the exercise was to impound a crushing condition to the 
grains and to investigate the crushing characteristics of 
the particles. The induced crushing load was performed 
using a Universal Testing Machine commonly used in 
most laboratories however, with the addition of a piston 
that could fit inside the test cylinder extending to the top 
of the test specimen. 
     The gravel was loaded to three different uniaxial 
compressive stresses. These stresses were equal to 10.0 
MPa, 11.8 MPa and 18.2 MPa . Due to the position of the 
individual grains and the consequent manner by which 
the particle-to-particle contact points developed and 
changed throughout the tests, varying contact forces 
were experienced by individual grains in the specimen.  
     As the uniaxial compressive stress was applied to the 
gravel grains, they experience abrasion and crushing. 
The abrasion and crushing occurred all over the 
particulate system without any particular pattern. With the 
crushing of a particle, a sudden addition of voids was 
created since the broken particles substituted solid 
particles in the system. With crushing, the point-to-point 
contact between the particles was reduced as the amount 
of fragments increased. How a sample of gravel looked at 
the end of a uniaxial compression test can be seen in 
Figure 2. 
 
 

 
 
Figure 2. Crushed and intact angular (A) and rounded (R) 
gravels after compression test 
 
After the completion of the uniaxial compression test, the 
gravel samples were removed from the tubes and a sieve 
analysis was performed on them. The sieve analysis was 
made on each of the samples removed from the tubes 
that were made of broken and unbroken grains. The 
results of the sieve analysis produced particle size 
distributions that were used to determine the 
fragmentation fractal dimension, DF, of the samples 
(mentioned in Section 2.2). The results of the sieve 
analysis are shown in Figures. 3 and 4. These figures 
indicate that the samples upon crushing developed a 
particle size distribution that was well graded or fractal in 
nature. The samples experienced a higher level of 
fragmentation with an increase in the value of the uniaxial 
compressive stress.  
 

 
Figure 3. Particle size distribution after crushing tests for 
round (R) gravels 
 

 
Figure 4. Particle size distribution after crushing for 
angular (A) gravels. 
 
 
2.2    Fragmentation Fractal Dimension of the Grain Size     
         Distribution 
 
Particle size distribution of naturally occurring soils have 
been found by Tyler and Wheatcraft (1992) and Hyslip 
and Vallejo (1997) to be fractal.  According Tyler and 
Wheatcraft (1992), the particle size distribution in a 
natural soil can be obtained using the following equation: 
 
 

     RN( >r) = FD
kr                                                    [1]                                                                                                                           

 
where N(R>r) is the total number of particles with linear 
dimension R (radius of the particle) which is greater than 
a given size r; k is a proportionality constant; and DF is 
the fractal dimension of the size distribution of grains. As 
a result of compression, the size distribution in a granular 
soil will change. Changes in the size distribution of the 
grains will be reflected in the values of DF. Thus, grain  
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fragmentation in soils subjected to compressive stresses 
can be evaluated by the changes in their fragmentation 
fractal dimension, DF.   
     It is very time consuming to apply the number-based 
relationship expressed by Equation 1, is very time 
consuming. Another relationship that uses the results of a 
standard sieve analysis test was developed by Tyler and 
Wheatcraft (1992) to calculate the fragmentation fractal 
dimension, DF , of natural soils. This relationship is: 
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where M(R<r) is the cumulative mass (weight) of particles 
with size R smaller (finer) than a given comparative size r; 
MT is the total mass (weight) of particles; r is the sieve 
size opening;  rL  is the maximum particle size as defined 
by the largest sieve size opening used in the sieve 
analysis; and DF is the fragmentation fractal dimension. 
The results of a sieve analysis tests using Equation 2 can 
be plotted on log-log paper. The slope, m , of the best 
fitting line through data obtained using Equation 2 and  
the fractal dimension, DF , are related as follows (Tyler 
and Wheatcraft, 1992): 
 
 
     DF=3–m                                                                   [3]      
                                                                                                                 
 
     Equations 2 and 3 were used to obtain the fractal 
dimension  of the size distribution of gravel subjected to 
crushing in the uniaxial compression tests (Figures 1 and 
2).  The fragmentation fractal dimension, DF, for the grain 
size distributions shown in Figures 3 and 4  are shown in 
Figures 5, 6 and 7. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Fragmentation of round (R) gravels and the 
related fragmentation fractal dimension Df  

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.  Fragmentation of angular (A) gravels and the 
related fragmentation fractal dimension Df  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 7. Relationship between the fragmentation fractal 
dimension Df and the applied crushing pressure for both 
the rounded (R) and angular (A) gravels. 
 
 
An analysis of Figures 5, 6 and 7 indicates that the 
fragmentation fractal dimension, DF increases with the 
uniaxial compressive stress applied to the gravel. The 
fragmentation fractal dimension measures the degree of 
crushing of the gravel. The greater the fragmentation 
fractal dimension, the greater is the level of breaking of 
the gravel particles. 
 
 
3     AN EXPLANATION FOR THE DEVELOPMENT OF   
       A FRACTAL SIZE DISTRIBUTION IN THE    
       SAMPLES 
 
Next, an explanation why the gravel developed a fractal 
size distribution is carried out using the Discrete Element 
Method. The PFC

2D
 code developed by Itasca (202) was 

used in order to gain an understanding how the gravel 
grains interact, distribute the reacting forces and resist 
the uniaxial compressive loads 
 
 
 
3.1     Previous DEM Simulations on Crushing  
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Besides laboratory tests, there is another tool that can be 
used to analyze crushing in granular materials. Numerical 
simulations in the form of the Discrete Element Method 
(DEM) can also be used parallel to laboratory tests to 
allow a better visualization of the crushable behavior of 
granular materials. Originally developed by Cundall and 
Strack (1979), DEM has been used to simulate the 
behavior of granular assemblies when subjected to 
different loading conditions. Commercial codes such as 
the Itasca PFC

2D
 are based on this method. However, the 

PFC
2D

 does not allow particle breakage.  
     Different solutions have been proposed in order to 
overcome the constraint of no particle breakage when 
working with DEM codes. One solution to this problem is 
to treat each granular particle as a porous agglomerate 
built by bonded uniform smaller particles. In order to 
establish a failure criterion, the strength of the bonding 
between the particles forming the agglomerates can be 
specified. This approach has been used by Jensen et al. 
(2001).   
     Another different solution to the particle breakage 
problem is to replace the particles that are fulfilling a 
predefined failure criterion with an equivalent group of 
smaller particles. Tsoungui et al. (1999) used this 
approach considering that a particle fulfilling a predefined 
tensile failure criterion could be replaced by a group of 
eight particles. This latter approach was used by Lobo-
Guerrero et al. (2006) to simulate crushing in granular 
materials under static uniaxial compression tests. In this 
study, the work by Lobo-Guerrero el al. (2006) was used. 
.  
3.2   Configuration of the Simulated Material and Testing     
        Procedure  

 
The first step in the compression simulation was the 
generation of the sample. A simulated box was created 
using the PFC

2D 
program which is based on DEM (Itasca 

Consulting Group, 2002). This simulated box container 
measured 0.05 m in width and 0.10 m in height. The 
coefficients of normal and shear stiffness of the walls  
were set to 1x10

9
 N/m, and their friction coefficient was 

set to 0.7. After this, 120 particles having a radius of 3 
mm were randomly generated inside the box with the 
constraint of no overlaps between them. The density of 
these particles was set to 2,500 kg/m

3
. Their friction 

coefficient was also set to 0.7. These particles were 
allowed to settle under a 1g gravity field (1g= 9.81 
m/sec

2
). For the static uniaxial compression tests, 

compression was induced in the sample by a vertically 
moving piston plate with a velocity equal to 0.0625 
mm/sec. The piston plate applied a load to the particles 
that varied from 1x10

4
 N to 1x10

5 
N.   

 
3.3     Particle Breakage Criterion 
 
When using the PFC

2D 
program, particles are idealized as 

discs that interact with each other at their contacts. This 
interaction is mainly governed by three models: the 
stiffness, the slip, and the bonding models. Only the first 
two models were used in this study. The failure criterion 
for the particles when subjected to compressive loads has 
been presented and discussed in detail by the  authors in 

previous publications (Lobo-Guerrero et al., 2006; Vallejo 
et al., 2006). This failure criterion is based on the forces 
acting on a particle, its coordination number, and its size. 
A summary of the failure criterion is as follows: (a) only 
particles with coordination number equal or less than 3 
are allowed to break. When a particle breaks, it is 
replaced by eight smaller particles of different sizes. Of 
these eight, two have a radius equal to 0.5 times the 
radius of the unbroken particle, two have a radius  equal 
to 0.333 times the radius of the unbroken particle, and 
four have a radius equal to 0.167 times the radius of the 
unbroken particle,  (b) the type of loading exerted to a 
particle with a coordination number equal or smaller than 
three is similar to the one exerted on a particle by a 
Brazilian type of test (Fairhurst, 1964), and (c) the tensile 
stress at which a particle breaks is equal to: 3x10

6
[r]

-1
 Pa, 

where r is the radius of the particle. For a particle with a 3 
mm radius used for the testing program, the tensile stress 
to break it into eight particles is equal to 10

6
 Pa (Figure 

8). The process of breaking is a continuous process, 
however, as the particles get smaller, the tensile stress 
needs to increase in order to break the particles as stated 
by the relationship between the tensile stress and r.  
 
 

 
 
Figure 8. The induced tensile stress and the produced 
fragments after failure  
 
 
3.4    Results of the Static Compression Tests 
 
After the granular material was placed in the box, it was 
subjected to compressive loads that varied in value from 
1x10

4
 N to 1x10

5
 N. Figure 9(a) shows the particles when 

subjected to a compressive load equal to 1x10
4
 N, Figure 

9(b) shows the particles subjected to 3x10
4
 N, and Figure 

9(c) shows the particles subjected to 1x10
5
 N . Figure 

9(a) shows no sign of particle breakage. Figures 9(b) and 
9(c) show a large portion of the original particles 
experienced fragmentation as a result of the increased 
compressive loads. These figures also indicate that the 
location of the broken particles were uniformly distributed 
throughout the sample when the axial loads were large to 
produce particle’s breakage (Figure 9(c)). Also, Figure 9 
indicates that the reaction of the particles to the applied 



axial loads was through the development of force chains 
at contact points between the particles. The intensity of 
these fore chains is related to the thickness of the force 
chains in the figure. The thicker the force chains are, the 
larger the interparticle forces are (Figure 9). 
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Figure 9. (a) Particle crushing and force chains in the 
samples subjected to: (a) 1X10

4
N, (b) 3X10

4
N, and (c) 

1X10
5
N compressive loads. 

 
 

3.5    Fractal Analysis of the Network of Force Chains 

 

An analysis of the force chains developed by the disks 
indicates that these force chains are distributed like a 
network in the granular system and the network consists 
of branches of varying degrees of intensity (the thicker 
the force chain in Figure 9, the larger the force).  Using 
the box method from fractal theory, the fractal dimension 
of the network was obtained. The box method uses grids 
made of squares of different sizes that are placed on top 
of the force networks [Figure 9(b)]. If one plots in a log-log 
paper the number of boxes intercepted by the force 
chains versus the size of the squares, one obtains the 
fractal dimension of the distribution, DD , of the force 
chains in Figure 9 (b). This has been done in Figure 10 
for the force chain shown in Figure 9(b). The value of DD 
≈ 1.3 (which is the absolute value of the exponent of the 
variable x)  
 
 
 
 
.  
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
Figure 10.  The fractal dimension of the distribution of 
force chains in Fig. 9(b) 
 
 
An analysis of Figure 10 indicates that the distribution of 
the force chains in Figure 9(b) is indeed fractal. The 
fractal dimension of the distribution of forces in the 
granular system, DD  is equal to 1.2988 ≈ 1.3. 
     The intensity of the forces in the chains shown in 
Figure 9(b) was also obtained using the  PFC

2D
  code. 

This code has a subroutine that creates a contact pointer 
that goes contact by contact calculating and classifying 
the resultant force in each contact. At the end of the run 
of this subroutine, the number of the contacts with their 
respective contact forces are obtained. Using this 
information, a log-log plot of the number of contacts, N, 
with a force, R, greater than certain value r  is plotted 
against the contact force, r.  The result of this analysis is 
shown in Figure 11. 
     An analysis of the results shown in Figure 11 indicates 
that the distribution of the intensity of force chains in the 
network shown in Figure 9(b) is also fractal. The fractal  
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Figure 11. Plot to obtain the fractal dimension of the force 
intensity distribution, DF = 3.4621 
 
 
dimension of the distribution of the intensity of force 
chains in the network shown in Figure 9(b) was found to 
be equal to 3.4621 (Figure 11).  
 
3.6     Discussion of the Results 

 
An analysis of the results shown in Figures 9, 10 and 11 
indicates that the distribution of the network of force 
chains as well as the distribution of their intensities are 
fractal in nature. Because the distribution of the force 
chains does not cover all the grains, some of the grains 
are subjected to the force chains while some of the grains 
are not. In fact if one looks at Figure 9, some of the idle 
grains (the ones that not carry any load), can be removed 
without affecting the stability of the granular system.    
     The distribution of the intensity of the force chains was 
also found to be fractal (Figure 11).  Thus, some of the 
particles will be subjected to complete crushing [Figures 
9(b) and 9(c)]. Some of the particles will be partially 
broken under the moderate loads and some of the 
particles will resist the load without breaking (the white 
particles in Figure 9). Thus, the end result of the 
compression process will be a system of granular 
material that is fractal on their size distribution as shown 
by the laboratory experiments (Figures 5 to 7). 
 
 
4.     CONCLUSIONS 
 
Laboratory compression tests on a relatively uniform 
granular material (fine gravel) and their simulation using  
the Discrete Element Method indicated the following: 
      (1) The effect of a compressive load exerted on the 
fine gravel was to break the particles into a new system 
that had a size distribution that was fractal in nature.  
     (2) The cause for the fractal size distribution of the 
broken and unbroken grains was a network of force 
chains that was fractal in its intensity and distribution. 
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