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ABSTRACT 
The Nonlinear Least-Square Regression (NLSR) approach was used to estimate model parameter values in the 
calibration of a transient groundwater flow and solute transport model of a heterogeneous fractured rock aquifer system. 
Regression statistics including sensitivity, relative composite sensitivity and correlation coefficients were calculated for 
analysing the parameter uncertainty. With the presented case study we demonstrated that the NLSR technique provides 
a simple way to quantify parameter uncertainty and to improve calibration of a groundwater flow and solute transport 
model of a complex fault zone system. 
 
RÉSUMÉ 
La méthode des moindres carrées non-linéaires (MCN) est utilisée afin d’estimer les valeurs des paramètres de 
calibration pour la modélisation du passage de la nappe phréatique et du transport d’un soluté à travers une  roche 
fracturée de manière hétérogène, dans un système aquifère souterrain. Cette régression statistique, incluant le 
coefficient de sensibilité,  la sensibilité relative composée et le coefficient de corrélation, fut employée pour déterminer le 
paramètre d’incertitude.  Avec le cas d’étude d’une nappe phréatique d’un site minier, nous démontrons que la technique 
MCN est un moyen simple pour quantifier le paramètre d’incertitude d’une part et  d’améliorer la calibration du model 
d’une nappe phréatique et d’un soluté transporté à travers un système de faille complexe, d’autre part. 
 
 
1 INTRODUCTION 
 
Parameter calibration in groundwater flow and solute 
transport modeling of heterogeneous fractured rock 
systems is still a challenge due to the incomplete 
knowledge of the flow pathways and the limitations in 
quantity and quality of the data available for 
characterising the fractured rock aquifer. In the last 
decade a variety of numerical approaches have been 
used to improve the calibration of models to simulate 
groundwater flow in fractured rock (Beven and Freer, 
2001; Selroos, et al, 2002; Beauheim and Roberts, 
2002; Kavetski and Kuczera, 2007). Though the 
computational aspects of such approaches are 
reasonably well developed, the question of confidence 
in parameter estimates has not been completely 
resolved (Seber and Wild, 2003; Hassan, 2004).  
     Model calibration is traditionally accomplished by 
manual trial-and-error approach with iterative selection 
of parameter values to improve the model results using 
intuition about responses of modelling results to 
changes in parameter values. Consequently, a 
calibration obtained using a trial-and-error approach 
alone does not guarantee the statistically best solution. 
Inverse model like linear least-squares regression has 
been widely utilised in model calibration in which the 
parameter values are adjusted automatically to match 
site observations as closely as possible (Seber and 
Wild, 2003; Hill and Tiedeman, 2007, Foglia et al, 
2009). Linear inverse modeling can statistically give the 
most appropriate solution for the given input 

parameters, quantifies the uncertainty in parameter 
estimates and yield results that are not readily available 
through trial-and-error calibration efforts (Poeter and 
Hill, 1996). However, it rarely leads to optimal estimates 
of model parameters values in modelling of a 
heterogeneous groundwater system since linear inverse 
models frequently obtain local instead of global minima 
during the error estimation process, especially with 
small data sets of the flow observations in a fractured 
rock aquifer (Hassan, 2004; Moore and Doherty, 2006). 
Bates and Watts (1988) stated: “we hasten to warn the 
reader that linear approximation regions can be 
extremely misleading”. 
      The nonlinear regression technique, using a much 
larger and more general class of objective functions to 
overcome the once-direct solution of Linear Least-
Squares Regression (LLSR), has been used in 
groundwater modelling in the last decade (Yobbi, 2000; 
Zhang et al. 2006; Mathod et al, 2008). This approach 
enhances data representation in space (with weights) 
and optimizes the best-fit parameter values in the 
calibration, especially when the estimated parameter 
errors are uncorrelated but have different uncertainties 
that generally occur in the modelling of heterogeneous 
systems (Bate and Watts, 1988). The purpose of this 
paper is to present the application of nonlinear least-
squares regression (NLSR) to the groundwater flow and 
solute transport model calibration around a fault zone in 
a mining area. The NLSR method is briefly described in 
the subsequent sections. A numerical framework 
including sensitivity, relative composite sensitivity and 



correlation coefficients was developed for analysing the 
parameter uncertainty. The groundwater flow model 
utilized for this study is based on the data and 
information presented by Coffey (2010a) for a mine site 
hydrogeological investigation. A short description of the 
hydrogeological model and regression procedure 
follows. The optimal set of parameter values and 
associated statistics finally determined by the 
developed NLSR framework is presented.  
 
 

2 NONLINEAR LEAST-SQUARES REGRESSION 
 
The process of model calibration is essentially the same 
using either inverse models or the trial-and-error 
approach: parameter values and other aspects of the 
model are adjusted until the dependent variables (water 
levels, flows, concentrations) match field observations. 
The nonlinear least-squares regression method extends 
linear regression for use with a larger class of functions 
that can be written in a closed form.  
 
2.1 NLSR Approach 
 
Nonlinear regression attempts to fit a model function 
that may depend nonlinearly on the parameter vector p̂

to a set of data with y-values at the corresponding x-

values 
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where f is the nonlinear model function, and is a 

random error term. The nonlinear model functions are 
very commonly used in groundwater flow and solute 
transport modelling. For example flow through fractures 
used to be conceptualized as “cubic law” (Navier-
Stokes equations) and the exponential function 
represents a semi infinite line dipole of decaying 
strength distribution (Anderson, 2000). The goal of 
nonlinear regression is to find the optimal values of 
parameter vector p̂  that minimize the least squares  

function which is the sum-of-squared differences 
between observed and modelled quantities and is 
defined as 
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where )ˆ,( pxf i
 is the i

th
 modelled value with the 

parameter vector p̂  used in the model function, yi is the 

i
th

 measured value, and n is the number of 
observations. Nonlinear least squares optimization 
algorithm has been designed to exploit the structure of 
a sum of the squares objective function (Foglia et al, 
2009) 
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where 
iii ypxfpr  )ˆ,()ˆ( is the i

th
 least squares 

residual and wi is the weighting factor. Optimization 

method used in this study is a modified Gauss-Newton 
method (Yobbi, 2000), the numerical framework of 
which is described in the following section. 

 
2.2 NLSR Framework 
 
The NLSR framework for estimating parameter values, 
including parameter sensitivities and correlation in 
groundwater model calibration, is developed in the six 
simplified stages outlined below.  
 
(1) The parameter-estimation process is to perform one 

execution of the model to establish the initial 
differences (residuals) between simulated and 
measured water levels. The residuals are squared 
and summed to produce the sum-of-squared 
residuals objective function (eq. [2]), which is used 
by the regression to quantify the model fit to the 
observations.  

(2) Composite sensitivity (CS) indicates the cumulative 
amount of information that measurements contain 
toward the estimation of the parameters and is 

quantified with the least squares residue (
ir  

in 

equation [3]  using the equation:  
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The sensitivity coefficients 
ji pr   are given by the 

Jacobian (sensitivity) matrix of the least-squares 
residue vector r̂ and serve as an approximate 
indicator of the sensitivity of the Nk observations in 
the k

th
 zone with respect to the j

th
 parameter 

estimated.  
(3) Correlation coefficients between parameters, 

indicates the degree of linear dependency in the 
sensitivity matrix and is calculated with CS vector 
values 
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where Cov(CSkj, CSkl) is covariance of composite 

sensitivity of estimated j and l parameters The
kjCS  

and 
klCS  are variances of composite sensitivity of 

estimated j and l parameters, respectively. 
(4) The relative composite sensitivity (RCS), which is 

the square root of the main diagonal value of the 
Jacobian matrix of the least-squares residue vector 
divided by the maximum of the main diagonal value 
for each parameter, is quantified for parameter 
uncertainty analysis. The RCS for the j

th
 parameter 

is qualified as: 
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(5) After the residuals and sensitivities are calculated, a 
single parameter-estimation iteration is performed. 
The arrays of sensitivity coefficients and residuals 
are used by a quasi-Newton procedure (Bate and 
Watts, 1988) to compute the parameter change for 
improving the model.  



(6) The model is updated to reflect the latest parameter 
estimates and a new set of residuals is calculated. 
The entire process of changing a parameter in the 
model, calculating new residuals, and computing a 
new value for the parameter is continued iteratively 
until the model error change is reduced to a 
specified level or until a specified number of 
iterations are made.  

 
The criteria of uncertainty analysis based on statistical 
parameters from the above described framework are: 
.  
(1) The CS values are used for assessing the relative 

sensitivity of the model (either as a whole or locally) 
to each parameter.  

(2) Correlation between parameters indicates whether 
or not the parameter estimates are unique with the 
given model construction and observations. It is an 
indicator of the degree of linear dependency in the 
sensitivity matrix and reflects the redundancy of the 
problem. Correlation coefficients greater than 0.95 
usually indicate a pair of parameters that are highly 
correlated (Hill and Tiedeman, 2007). These highly 
correlated parameters are not desirable because 
they cannot be independently estimated. 

(3) The most sensitive parameter has an RCS equal to 
1.00 and the RCS of all other estimated parameters 
is less than one. The larger the value of the RCS, 
the more sensitive the model is to that parameter, as 
a whole. Parameters with smaller RCS values also 
tend to have higher parameter uncertainty and 
broader confidence intervals.  

 
3 CASE STUDY 

 
In Australia mined out ore pits have been used 
increasingly for the storage of mining process residue. 
As part of approval requirements, a three-dimensional 
FEFLOW finite element groundwater flow and solute 
transport model was developed for simulating the 
effects of in-pit filling on the groundwater environment at 
a mine site in Victoria, Australia.   

Fault zones, disrupting Ordovician meta-sandstone 
and meta-siltstones, are understood to be the 
controlling hydrogeological structures at the site. 
Abandoned and partially flooded mine workings are 
aligned along these fault zones with the active 
underground mining following the fault zones to depth in 
the south of the workings. The country rock is overlain 
by a thin cover of alluvial sediments with cover 
thickness increasing to the east towards a river valley. 
Groundwater in the alluvial sediments is considered to 
be relatively fresh with a low salinity of 50 to 100 mg/L  
Total Dissolved Solids (TDS). In contrast, the salinity of 
groundwater in the fractured country rock ranges from 
2,000 to 10,000 mg/L TDS. 

The groundwater environment across the site was 
conceptualized as consisting of three zones with 
relatively small groundwater head gradients in broad 
areas to the West and the East of the pits and an area 
between fault zones, where water levels drop over a 

very short distance. The conceptual site model is shown 
in Figure 1. 

Based on the fracture density and frequency of fault 
structures observed in exploration boreholes the central 
zone was subdivided into two zones with Zone 1 
representing intensely fractured and faulted rocks and 
Zone 2 characterised by numerous faults but less 
intensely fractured rock. The back fill in the pits were 
conceptualised by a zone of Rock Fill in the South of 
the southern pit and a zone filled with process residue 
(RSF).  

Figure 1 Location of study area and parameter 
zonation. Numbers at the figure frame represent mine 
coordinates in metres. 
  
  The transient groundwater flow and solute transport 
model was calibrated with groundwater level recorded 
in 2009 over 2 ½ months at 20 monitoring bores and 
with concentrations of selected solutes obtained from 
groundwater and in-pit water sampled over the same 
time period.  Calibration was conducted using both 
methods: LLSR and NLSR, and results obtained with 
both methods were compared. The general results from 
the analysis described in the following sections indicate 
that there is insufficient observation data to 
independently estimate all model parameter values 
given the present zonation.  
      
3.1 Relative Composite Sensitivities for zone specific 

hydraulic conductivities 
 
Changes to horizontal hydraulic conductivity (Kh) and to 
the anisotropy factor for hydraulic conductivity Kh/Kv that 
defines the ratio of horizontal hydraulic conductivity and 



vertical hydraulic conductivity were found to have the 
most significant effect on computed groundwater heads.  
Except for the residue fill in the pits (RSF zone in  
Figure 1), RCS values computed for the remaining 
hydraulic conductivity zones are shown in Table 1. 
NLSR analysis results indicate that the available 
groundwater level data provide sufficient information to 
reliably estimate hydraulic conductivity of the fractured 
country rock for two of the four parameter zones  
(RCS > 0.5). Relative Composite Sensitivity is highest 
for the Zone 1 and is lowest for the Zone 3. The low 
sensitivity for Zone 3 and the Rock Fill zone is primarily 
due to the lack of monitoring data within these zones.  
 
Table 1 Relative Composite Sensitivity (RCS) of 
horizontal hydraulic conductivity adopted for four 
parameter zones during model calibration. 

Zone Kh  
(m/d) 

RCS Number of bores 

Zone 1 0.12 1.000 6 
Zone 2 0.015 0.749 5 

Rock Fill 0.26 0.227 1 
Zone 3 0.002 0.013 8 

 
The parameter zones are not highly correlated to 

one another, except for Zone 1 and Zone 2 that show 
high correlation with a correlation coefficient R

2
 of 0.93. 

The high correlation between Zone 1 and Zone 2 
indicates that with respect to the hydraulic conductivity 
these zones may not be separable. The lowest degree 
of correlation occurred between Zone 3 and the Rock 
Fill (r = 0.28).  Additional groundwater-level monitoring 
data in these zones would be beneficial for improving 
the model calibration. 

RCS values for the anisotropy factor of hydraulic 
conductivity are summarised in Table 2. With RCS 
values for Zone 1 and Zone 2 anisotropy factors of 
hydraulic conductivity exceeding 0.5 estimates are 
considered to be reliable. However, the RCS is very low 
for the Rock Fill zone (RCS<0.1) indicating low reliability 
of the calibration result for the anisotropy factor of this 
zone. Improvements of the reliability of the parameter 
estimate for this zone could be achieved with additional 
observation locations in the Rock Fill.  
 
Table 2 Relative Composite Sensitivity (RCS) of 
anisotropy factor of hydraulic conductivity adopted for 
four parameter zones during model calibration. 

Zone Kh/Kv  RCS Number of bores 

Zone 2 2 1.000 6 
Zone 1 2 0.773 5 
Zone 3 5 0.185 8 

Rock fill 1 0.006 1 

 
3.2 Assessment of zone specific absorption coefficient 

estimates   
 
 The RCS values of arsenic absorption coefficients (ca) 
computed for each parameter zone are shown in  
Table 3.   The RCS values indicate that the water 
quality data used for model calibration provides 

sufficient information to estimate the absorption 
coefficients for two of the four parameter zones  
(RCS > 0.5). The lowest RCS value computed for the 
Rock Fill zone is basically due to the lack of water 
quality data within the Rock Fill zone while the second 
lowest sensitivity for Zone 3 is possibly due to very low 
solute concentrations observed in Zone 3.  
 
Table 3 Relative Composite Sensitivity (RCS) of arsenic 
absorption coefficients adopted for four parameter 
zones during model calibration. 

Zone ca  
 

RCS Number of bores 

Zone 1 0.18 1.000 6 
Zone 2 0.12 0.557 5 

Rock Fill 0.22 0.083 1 
Zone 3 0.05 0.008 8 

 
Most of the estimated absorption coefficients are 

highly correlated. As shown in Table 5, the most highly 
correlated zones are Zone 1 and Zone 2 with a 
correlation coefficient (R

2
) of 0.97. The lowest 

correlated pair of zones is adjacent Zones 3 and Rock 
Fill with a correlation coefficient of 0.37. These 
relationships reflect the less dependency of model 
results on the observation data set and the high 
uncertainty within the parameter-zonation of absorption 
coefficient. 

 
3.3 Comparison of NLSR and LLSR model calibration 

results  
 
Two different approaches, LLSR and NLSR, were 
implemented for the analysis of parameter uncertainty 
as part of the model calibration. Tables 4 and 5 show 
the adopted values for hydraulic conductivities and 
absorption coefficients for the two calibration 
approaches. 
 
Table 4 Horizontal hydraulic conductivities derived from 
initial (LLSR) and optimal (NLSR) calibration 
approaches. 

Zone Initial 
(m/d)   

Optimal 
(m/d) 

RCS The most 
correlated

 

Zone 1 0.1 0.12 1.000 Zone 2 (.93) 
Zone 2 0.01 0.015 0.749 Zone 1 (.93) 
Zone 3 0.001 0.002 0.013 Zone 2 (.87) 
Rock 
Fill 

0.12 0.26 0.227 Zone 1 (-.79) 

 
Table 5 Absorption coefficients derived from initial and 
optimal calibration approaches. 

Zone Initial  Optimal  RCS The most 
correlated

 

Zone 1 0.15 0.18 1.000 Zone 2 (.97) 
Zone 2 0.15 0.12 0.557 Zone 1 (.97) 
Zone 3 0.05 0.05 0.008 Zone 2 (.92) 
Rock 
Fill 

0.20 0.22 0.083 Zone 1 (-.85) 

 



The optimized hydraulic conductivities (K) shown in 
Tables 4 were increased by 20% to 100% from the 
initial estimated parameter values while the final arsenic 
absorption coefficients (ca) shown in Table 5 were 
adjusted by 10% to 20% from the initial estimated 
values. As indicated previously, parameters (K and ca) 
with higher RCS values for Zone 1 and  
Zone 2 are likely to have lower parameter uncertainty 
and the parameters with smaller RCS values in Zone 3 
and Rock Fill zone are likely to have higher parameter 
uncertainty. 

Most of the estimated K-values are not highly 
correlated to one another. However, as indicated by 
correlation coefficients in Table 4, the zones with the 
most highly correlated pair are adjacent fractured Zones 
1 and 2 with a correlation coefficient of 0.93. Similarly 
the zones with the most highly correlated pair in ca-
values shown in Table 5 are also adjacent fractured 
Zone 1 and Zone 2 with a correlation coefficient of 0.97. 
These values reflect the high uncertainty in the 
parameter-zonation of the model. 

Table 6 summarises statistical parameters of the 
simulation results in a period of 4 months from the 
models calibrated using LLSR and NLSR approaches. 
The results demonstrate that the improvement of the 
model calibration achieved by using NLSR approach 
compared to the LLSR calibration is essential with the 
diminution of 30% of groundwater level residual. 
Correlation coefficient between measured water level 
values and values computed with the NLSR calibrated 
models increased by 2% when compared to the 
correlation coefficient computed with results of the 
LLSR calibrated model.  

 
Table 6 Statistical summary of groundwater flow model 
simulations 

 R
2
 
+) 

MSE
++)

  Residue 

Initial  0.96 0.007 -0.42 (m) 
Optimal 0.98 0.005 -0.34 (m) 
+)   Correlation coefficient between measured and modelled 

water level; ++) Mean square error 

 
Statistical parameters obtained from arsenic 

concentration simulations using absorption coefficients 
(ca) calibrated with LLSR and NLSR approaches are 
shown in Table 7. The improvement of the solute 
transport model calibration made by NLSR compared 
with the results from the LLSR approach is significant 
with a 40% reduction of arsenic concentration residual 
and a 25% reduction of Mean Square Error (MSE). Also 
the correlation coefficient between measured and 
computed arsenic concentration values slightly 
increased by about 0.5% when compared to the LLSR 
calibrated model.  
 
Table 7 Statistical summary of arsenic solute transport 
model simulations 

 R
2
 
+) 

MSE
++)

  Residue 

Initial  0.948 0.0093 0.0071 (mg/L) 
Optimal 0.953 0.0072 0.0038 (mg/L) 
+)   Correlation coefficient between measured and modelled As 

concentration; ++) Mean square error  

 
3.4 Model validation 

 The calibrated model was validated with monitoring 
data recorded in 2009 and 2010 over a period of 14 
months during the pre-filling and the filling of the residue 
storage facility (Coffey, 2010b). For the model validation 
the modelling efficiency index (IA) was used to analyse 
the correspondence between model results and 
observations.  The IA is commonly used as a goodness-
of-fit measure and is defined as: 

                         [7] 

Where  are the modelled and observed 

variables, n is the number of data, and  are 

the corresponding mean values. The IA is defined in a 
range between 0 and 1, and the closer it is to 1, the 
better is the fit between modelled and observed 
variables and the validity of the model (Hassan, 2003).  

Modelling efficiency index between observed and 
computed water level and arsenic concentration for 
each parameter zone were calculated and are 
summarised in Table 6.  

Based on an IA threshold value of 0.8 which was 
initially adopted for this case study, the parameters, 
hydraulic conductivity and anisotropy factor of hydraulic 
conductivity for all zones were assessed to be valid.  
However, the absorption coefficient of all material zones 
required re-calibration. 

A comparison between the IA computed for 
parameter values obtained with the LLSR and the 
NLSR method showed that the IA values for parameters 
adopted during calibration using the NLSR method are 
slightly higher. In particular the IA computed for Zone 1 
and Zone 2 absorption coefficients are by 10% to 20% 
higher for the NLSR method compared to the LLSR 
method (Table 6).   
 
Table 6 Statistical summary of two model validations 

Zone IA for groundwater 
head 

IA for arsenic 
concentration 

 LLSR NLSR LLSR NLSR 

Zone 1 0.913 0.937 0.698 0.773 
Zone 2 0.908 0.932 0.427 0.515 
Zone 3 0.871 0.884 0.163 0174 
Rock 
Fill 

0.895 0.903 0.259 0.272 

 
 
4 CONCLUSION 
 
This paper presents the results of a study on the 
application of nonlinear least-squares regression to a 
groundwater flow and solute transport model of an in-pit 
residue storage facility located in a regional fault zone. 
The main advantages of using nonlinear least-squares 
regression for model calibration are the ability to 
estimate parameter values more accurate when 
compared to parameter estimation with LLSR and to 
quantify the quality of model calibration using more 



general statistical measures for both model sensitivity 
and uncertainty.   

 The quality of model calibration and uncertainty in 
simulation results has been demonstrated with 
regression statistics like Relative Composite Sensitivity 
(RCS), correlation coefficient and IA values. With 
calculated RCS, it could be demonstrated that the 
quality of the calibration highly relied on the density of 
monitoring locations for each parameter zone. 
Calibration of hydraulic conductivities for highly 
fractured rock zones (Zone 1 and Zone 2) showed a 
high value of RCS indicating that the sensitivity of 
computed groundwater heads to changes in hydraulic 
conductivity is very high. However, the uncertainty of 
the calibrated parameters of these zones is not higher 
than that of the others zones. The high correlation 
between Zone 1 and Zone 2 RCS suggest that the 
differentiation between the two zones is arbitrary and 
cannot be justified by the limited monitoring data used 
in the calibration. The uncertainty of the calibrated 
parameters for Rock Fill and Zone 3 tends to be very 
high possibly due to limited monitoring data available for 
this units and less well defined unit boundaries.  

The validation of the NLSR calibrated model showed 
an approximately 20% reduction in groundwater level 
residual and 40% reduction in solute concentration 
residual when compared to the LLSR calibrated model. 
The IA values for model parameters estimated with the 
NLSR method were up to 20 % higher when compared 
to IA values obtained for the LLSR parameter values. 
These results suggest that the NLSR technique can 
improve the quality of groundwater flow and solute 
transport models and yield results of a quality that are 
not readily achievable with linear regression calibration. 

Consequently, NLSR approaches could be used to 
determine strengths and weaknesses of the model and 
measures of parameter uncertainty in a heterogeneous 
aquifer system. Furthermore, the model is likely to be 
able to obtain a unique set of parameter values if the 
inverse model converges. The stability of algorithm 
used in this study for NLSR model calibration are 
affected by the number of parameters and observations 
with some instabilities encountered when the number of 
observation is small compared to the model parameter 
numbers to be calibrated. Nevertheless the statistical 
framework of the NLSR method provides an effective 
way to improve the calibration of groundwater flow and 
solute transport models.  
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