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ABSTRACT 
A method for the evaluation of the active earth pressure by a soil mass including the effect of water seepage with the 
determination of the seepage effect by the Boundary Element Method (BEM) followed by the trial wedge limit equilibrium 
procedure is presented. This process can be applied either for the case where the whole soil mass is subjected to the 
water seepage, or for the case where the seepage occurs only in a portion of the soil mass, which is delimited by a 
phreatic surface. For the last case, the BEM should be applied in an iteractive procedure to find the position of the 
phreatic surface. The numerical results obtained with the presented method shows that the seepage may significantly 
increase the active earth pressure against the retaining structure. 
 
RÉSUMÉ 
Une méthode est présentée pour la détermination de la poussée de terre en tenant compte de l'effet de la infiltration de 
l'eau dans le massif avec mur de soutènement. On utilise la méthode des éléments de frontière (BEM) pour déterminer 
l'effet de percolation, suivie d'une procédure d'équilibrage limite de coins du sol. Ce procédé peut être appliqué soit dans 
le cas ou toute le massif est soumis à la infiltration, soit dans le cas où la infiltration ne se produit que dans une partie du 
massif, délimitée par une nappe phréatique. Dans ce dernier cas, le BEM doit être appliquée dans une procédure 
itérative pour déterminer la position de la nappe phréatique. Les résultats numériques obtenus avec la méthode 
présentés ont montrée que la infiltration peut augmenter de manière significative la poussée active sur la structure de 
soutènement. 
 
 
1 INTRODUCTION 
 
The effect of seepage forces on the lateral active earth 
pressures on retaining structures has long been 
recognized by the geotechnical engineers (Terzaghi, 
1943). Some methods have been developed along the 
years to cope with this effect. The most classical of those 
methods includes the drawing of a flow net through the 
earth mass and determining the water pressure along the 
potential failure surface from that flow net (Lambe, 1969). 
This approach, however, is both inaccurate and time 
consuming due to the hand-drawing process involved. 

As an alternative to the above procedure, analytical or 
numerical methods could be used in the determination of 
the water pressure. Analytical methods have been 
developed to cope with this kind of problem, but the 
available solutions are restricted to very special cases with 
simple geometry and boundary conditions (Barros, 2006). 

Numerical methods based on the Finite Element 
Method have also been used in this kind of analysis, but 
its availability is restricted, in general, to expensive 
software that can perform coupled analyses of the soil-
water system. In the cases which involve phreatic 
surfaces, the need of specialized software is even greater 
because non-linear unsaturated seepage has to be 
considered. 

This work proposes the use of the Boundary Element 
Method in a linear analysis of seepage (Santos Junior, 
2010). The result of this analysis is then used in the 
determination of the active earth pressure, through the 

trial wedge method, a limit equilibrium procedure derived 
from the Coulomb's method (Coulomb, 1776). 

Two main cases are analysed. The first one (case 1) is 
a fully saturated soil mass supported by a retaining wall 
with a drainage layer along the soil-wall interface, as 
shown in Figure 1. 

 
    
 

 
Figure 1: Fully saturated earth pressure against a drained 
wall (case 1) 

 
 
The situation shown in Figure 1 may occur during 

heavy rainstorms. In this case the earth pressure against 
the retaining wall is believed to reach its peak value. 
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The second case (case2) is a soil mass with a phreatic 
surface delimiting a region where the water pressure is 
greater or equal to zero, supported by a wall equal to the 
first case. Figure 2 shows a schematic picture for this 
second case. 

 
    
 

 
Figure 2: Earth pressure exerted by a soil mass with a 
phreatic surface (case 2) 

 
 
The second case may arise for retaining walls built in 

partially submerged areas, such as retaining and 
regularization of water stream banks. 

In both cases shown above, the water flow toward the 
wall face increase the earth pressure against the retaining 
structure. It is important to take this effect in account when 
evaluating the earth pressure. 

Two-dimensional state for both the soil strain and the 
water flow is assumed. Also, the retained soil is 
considered  cohesionless and homogeneous. 
 
 
2 SEEPAGE SOLUTION 
 
In the present study, the water seepage through the 
retained soil is assumed to be independent of the wall 
displacement necessary to develop an active state within 
the soil mass. A steady state flux regimen is assumed in 
both cases described above. 

The mathematical model used to obtain the solution for 
a steady state seepage through a saturated porous 
medium is characterized by the differential equation (Harr, 
1962): 
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where ( , )h x z  is the water total head or potential, which is 

given by: 
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w

x z
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where ( , )x z  is the water pore pressure and w  is the 

unit weight of water. 
The seepage models for cases 1 and 2, which are 

used in the numerical solution, are shown in Figure 3. 
For the seepage problem in case 1, a unitary wall 

height = 1H  may be assumed. Later, the solution can be 
scaled to the real wall height. The boundary conditions 
imposed to the mathematical model are shown in Figure 
3(a). Along the ground surface the water head is constant 
and equal to the unity; along the soil-wall draining 
interface the water pressure vanishes and the water head 
is equal to the elevation head z ; and along the 
impervious face at the bottom the vertical component of 
the water flux vanishes. 

 

 
(a) Case 1 

 

 
(b) Case 2 

 
Figure  3: Seepage models used in the numerical solution 
for cases 1 and 2 

 
 

A fictitious vertical impervious face is placed at a 

distance L  from the wall, in order to close the seepage 

model. The distance L  should be large enough so it has a 
negligible effect on the results. Numerical experiments 

conducted on the model showed that for = 5L H  this 

condition is satisfied. 
For the seepage problem corresponding to case 2, a 

unitary wall height = 1H  and a fictitious vertical face 

placed at = 5L H  are also used in the numerical solution. 

But here, the fictitious face is pervious and a constant 

water head ( , ) =h x z H  is assumed along it. Therefore, 

this fictitious face is the source of all water that flows 
through the soil mass. 

Two boundary conditions are imposed along the 
phreatic surface in case 2. The water head along the 
phreatic surface should be equal to its elevation head z , 
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and there should be no water flux crossing it. This later 
condition makes the phreatic surface impervious. The 
phreatic surface position is initially unknown. The 
determination of this position is done by the numerical 
procedure, using those two boundary conditions (Menezes 
and Pulino, 1984). 

The solution for the described mathematical models 
comprises the determination of the potentials or water 
heads and hydraulic gradients or fluxes within the soil and 
along its boundaries. 

Numerical methods like the Finite Difference Method 
(FDM), the Finite Element Method (FEM) and the 
Boundary Element Method (BEM) can be used for the 
seepage solution. In the present work the BEM is 
employed due to some of its advantages over the other 
methods. The BEM requires discretization only along the 
boundaries of the problem, which reduces considerably 
the size of the system of equations to solve. The 
boundary-only discretization also implies that the 
numerical approximations are assumed only along the 
problem boundary, which leads to a higher accuracy of the 
results. Additionally, after the numerical solution along the 
boundaries are obtained, the magnitude of the potential at 
any point within the problem domain can be accurately 
obtained with ease. 

In order to apply the BEM, first the differential equation 
1 is transformed to an integral equation (Brebbia and 
Dominguez, 1992): 
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where ( , ) =1c x z  for points inside the problem domain. For 

points on the problem boundary, ( , )c x z  is a function of 

the boundary geometry at the point. Also,  is the 
boundary of the problem and n  is a unit vector outward 

normal to this boundary. 

In equation 3, * *( , ; )G x z x z  and * *( , ; )F x z x z  are the 

fundamental solutions for the potential and flux, 

respectively, at the field point * *( , )x y , due to a unit flux 

source concentrated at the source or collocation point 

( , )x y , in a unbounded medium. Those fundamental 

solutions are given by: 
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In the above equations, * 2 * 2= ( ) ( )r x x z z  is the 

distance from the point ( , )x z  to the point * *( , )x z  and 

( , )x zn n  are the components of vector n . 

The domain boundary is divided in boundary elements, 
with three nodes in each of them. Along each element, the 

potential h  and the flux = /q h n  normal to the 

boundary is approximated by a quadratic polynomial. 
The integral equation 3  is then discretized by the 

boundary element division and by h  and q  quadratic 

polynomials. A linear system of equations having as 
unknowns the flux normal to boundary surfaces where the 
water head is imposed, and potentials along the 
impervious surfaces, is obtained by successively setting 
the collocation point at the nodes on the boundary. 
Detailed description of this process can be found in 
Brebbia and Dominguez (1992). 

The solution of the system of equations along with the 
given potential and flux values along the problem 
boundary may be used later to evaluate the potential 
value at any point inside the problem domain, by means of 
the same approximate, discretized version of the integral 
equation 3. 

For the determination of the phreatic surface position 
in case 2, an initial guess for the elevation of each node 
along the surface is adopted. In the present method, the 
phreatic initial position is set at the ground surface. The 
impervious boundary condition is imposed to the nodes 
along this surface and then an initial numerical solution is 
obtained. This solution furnishes the water head along 
those nodes, which are then compared with their 
elevation. Then, the elevation values of those nodes are 
corrected and new numerical solutions are obtained. This 
iterative process is repeated until the elevation z  set to 
the nodes along the phreatic surface are close enough to 

the head h  obtained. The final solution provides the 

position of the phreatic surface, including the elevation 0z  

of its exit point, at the wall face. 
 

3 DETERMINATION OF EARTH PRESSURE 
 

The evaluation of the earth thrust, which is the resultant of 
earth pressures along the soil-wall interface is performed 
through the equilibrium analysis of the soil wedge 
delimited by the wall face and a trial failure surface. When 
the wall movement is enough to mobilize all the shear 
strength inside the soil mass (active state), a failure 
surface, which is assumed to be planar, will form. The 
resulting soil wedge is treated as a rigid body and the 
forces acting along its boundaries are shown in Figure 4. 

 

 
Figure  4: Forces on the soil wedge 

 
 

The weight W  of the soil wedge is given by: 
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where = cota  defines the failure plane location, 

= tan( 90 ) = cotb , with  and  indicated in 

Figure 4, and  is the unit weight of the soil. In 

Figure 4, aP  is the active earth thrust,  is the friction 

angle along the soil-wall interface, N  is the effective 

normal force, and T  is the tangential force acting on the 

failure plane. The pore water pressure force U  is the 

resultant of the pore pressures acting along the failure 
surface. 

The unit weight sat=  for case 1, whereas =  for 

case 2, considering that sat  is the saturated soil unit 

weight and  is the soil mean unit weight inside the soil 

wedge. 

For the determination of the pore water force U , the 

magnitude of the water pressure at a number of points 
along the failure surface along with a numerical integration 
scheme is used. The Gauss-Lobatto numerical quadrature 
method (Abramowitz and Stegun, 1972), with 12 
integration points, was selected for the integration and the 
water pressure at the integration points was obtained from 
the BEM seepage solution for the potentials inside the 
seepage domain. The Gauss-Lobatto method was 
selected because it includes the end points of the 
integration interval in the list of integration points, and the 
water pressure at the end points of that list are zero. Thus, 
only the water pressure at the ten internal integration 
points are needed. For case 2, it is necessary to 
determine the location of the intersection of the phreatic 
surface and the failure surface, in order to find the location 
of the integration points. 

For the evaluation of U , the unitary = 1H  seepage 

solution is used as basis for both case 1 and case 2. For 
case 1 the unitary solution is scaled by the actual wall 

height H . On the other hand, the scale factor for case 2 

is taken as 0/dz z , where dz  is the elevation of the exit 

point of the phreatic surface in the actual problem. 
The equilibrium condition of the forces acting on the 

soil wedge can be expressed as: 
 

= cos sin( 90 )aN W P U   [7] 

= tan = sin cos( 90 )aT N W P  [8] 

 
which can be rewritten as: 
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where = tanf  is the soil coefficient of internal friction 

and * = tanf  is the soil-wall interface coefficient of 

friction. Solving the above equations for aP  results: 
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The maximum value of aP  as a function of a  

determines the critical failure surface and the magnitude 
of the active thrust. 

 
 

4 NUMERICAL RESULTS 
 

In order to test the calculation procedure presented, a 

retaining wall having face inclination =100  was used as 

example. For this wall, the active thrust was evaluated for 

values of the soil internal friction angle  between 25  

and 45 , and for = 2 / 3 .  

The seepage numerical solutions for case 1 and 
case 2 were obtained, and the pore water pressure force 

U  was evaluated as a function of the inclination  of the 

failure surface. The ploted normalized values of U  are 

shown in Figures 5 and 6, for cases 1 and 2, respectively. 
 

 
Figure 5: Pore pressure force U  as a function of the 

inclination  of the failure surface, for case 1 ( =100 ) 

 



 
Figure 6: Pore pressure force U  as a function of the 

inclination  of the failure surface, for case 2 ( =100 ) 

 
 

With the numerical solutions for the seepage, the 
active earth trust was obtained by means of equation 11. 
The numerical results for the earth pressure obtained for 

case 1 and for two elevation ratios = /dd z H  

corresponding to case 2 are shown in Figure 7. 
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Figure 7: Coefficients of earth pressure for =100 , 

= 2 / 3 , / = 2w  

 
 

Figure 7 shows the calculated earth pressure as an 

equivalent earth pressure coefficient 21
= / ( )

2
a aK P H . 

Corresponding values of the coefficient of active earth 
pressure without seepage, calculated by the Coulomb's 
formula were also plotted in Figure 5 for comparison 
purposes. 

It should be noted that the results for cases 1 and 2 

were obtained assuming the ratio / = 2w . 

The plotted curves in Figure 7 show the influence 
of the water seepage on the active earth pressure. The 

seepage increases the earth pressure considerably, with 
the case 1 showing the largest effect. For case 2, the 
increase in the active earth pressure is dependent of the 
elevation of the phreatic surface. 

 
5 CONCLUSION 

 
The evaluation of the active earth pressure by a soil mass 
including the effect of water seepage can be conveniently 
and accurately done with the determination of the 
seepage effect by the Boundary Element Method followed 
by the trial wedge limit equilibrium procedure. This 
process can be applied either for the case 1, where the 
whole soil mass is subjected to the water seepage, or for 
the case 2, where the seepage occurs only in a portion of 
the soil mass, which is delimited by a phreatic case. For 
the last case, the BEM should be applied in a iteractive 
procedure to find the position of the phreatic surface. 

The numerical results obtained with the present 
method shows that the seepage may significantly increase 
the active earth pressure against the retaining structure. 
Therefore, the seepage effect should not be ignored in the 
structure design.  
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