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ABSTRACT 
This paper presents the continuous parameter genetic algorithm combined with the rigid finite element method to 
identify minimum factors of safety for slopes.  Whereas for homogeneous slopes, Bishop’s and RFEM analyses lead to 
similar predictions for global minimum factor of safety and location of critical slip surface, it is shown that predictions 
differ for layered systems.  It is important that layer rigidity is included for layered systems. 
 
RÉSUMÉ 
Cet article présente le paramètre continue de l’algorithme génétique combiné avec la méthode des éléments finis 
rigides pour identifier les facteurs minimales de sécurité des pentes. Alors que pour les pentes homogènes, la méthode 
de Bishop et celle des Éléments Finis Rigides conduisent à des prédictions similaires pour le facteur de sécurité globale 
et de la position de la surface de glissement critique; il est montré que les prédictions sont différentes pour un système 
hétérogène avec plusieurs couches. C’est important que la rigidité des couches soit prise en compte pour un système  
hétérogène à plusieurs couches. 
 
 
1 INTRODUCTION 
 
With the availability of numerical tools such as the finite 
element method, the geotechnical engineer is capable of 
realistically solving complex problems.  Owing to the 
uncertainty surrounding the initial conditions, boundary 
conditions and distribution, as well as history-dependent 
properties, the quality of the predictions are most often 
undermined. Simple methods often provide solutions that 
are adequate for practice given that the engineer is often 
interested in answering only two questions: (1) Is the 
structure stable?; and (2) Assuming a sufficient factor of 
safety, what movements are to be expected? These 
questions may be answered by uncoupling the failure and 
deformation analyses.   

Limit equilibrium analysis presents a long-standing 
simple framework for slope stability analysis. Many 
methods exist and the selection of the “best” may not be 
a trivial task. For a detailed discussion of the relative 
merits of various methods, the reader is referred to 
Fredlund & Krahn (1977). Implicit in the methodology is 
the use of a search algorithm to identify the surface that 
minimizes the factor of safety. The presence of many 
local minima can easily mislead traditional root finding 
methods. To help overcome this problem, various 
algorithms have been developed, such as: “grid and 
radius” methods (Chen and Shao 1983); “Monte Carlo” 
random search technique (Malkawi et al. 2001); and 
“genetic algorithm” search procedures (McCombie & 
Wilkinson 2002; Sengupta & Upadhyay 2005; Zolfaghari 
et. al., 2005). 

The objective of this paper is to present a continuous 
parameter genetic algorithm with emphasis on combining 
it with the rigid finite element method (RFEM) to identify 
minimum factors of safety of slopes. We begin by 
providing a short overview of the RFEM and then 
describe a continuous genetic algorithm, followed by 
examples that compare RFEM predictions with those 
obtained by Bishop’s simplified method.  

 

 
2 BACKGROUND 
 
2.1 Rigid Finite Element Method 
 
Similar to traditional limit equilibrium analyses a potential 
failure surface is assumed, a priori. The domain is 
subdivided into a series of rigid vertical slices as shown in 
Figure 1 for an assumed circular slip surface that is 
characterized by the center of the circle (Xc, Yc) and its 
radius R.   
 
 

 
 
Figure 1.  Geometry of slope stability problem 
The slices are assumed to be rigid, with relations defined 
for the interaction of elements; i.e., between inter-slice 
forces and the relative movement of adjacent slices.  
Similar relations exist between the slip surface and the 
rigid base using non-linear springs as shown in Figure 2.  
The movement of each element is constant and is 
defined in terms of horizontal and vertical displacement 
components. Following a finite element methodology, a 
system of equations is assembled consistent with virtual 
work for a specific slip surface.  Since the interactions of 



slices are non-linear, an iterative scheme must be used 
to solve the matrix equation. This procedure satisfies 
both local and global force equilibrium. Similar to 
traditional approaches, a comparison is made between 
resisting and mobilized moments to determine the global 
factor of safety. An advantage of the RFEM procedure is 
that relative movements are determined as part of the 
solution, which allow local factors of safety to be readily 
determined. The reader is referred to Stolle & Guo (2008) 
for details.  
 

 
 
Figure 2. Schematic of inter-slice and basal springs. 
 
 
2.2 Genetic Algorithm 
 
A “genetic algorithm” begins with a random sample of 
failure surfaces within a suitable domain, characterized 
by (Xc, Yc, R); see Table 1. The selection of the domain is 
an important step as too small of a search region may 
exclude the combination that defines the global minimum. 
On the other hand, too large of a search region may take 
too long to converge (due to the larger number of 
possible combinations) or lead to an unreasonable slip 
surface depending on the type of analysis used.   

Using the principle of natural selection, the critical 
factor of safety is determined by systematically adjusting 
the failure surface parameters of previously generated 
results. At the same time, it allows for an appropriate 
level of random searching in order to prevent converging 
too quickly on local minima.  This approach strikes a 
balance between the systematic, resource intensive “grid 
and radius” method and the highly randomized “Monte 
Carlo” method.  

 
 

Table 1.  Parameter ranges used for genetic algorithm 
 

Parameter
1
 Minimum Maximum 

Xc -0.25H H/m + 0.25H 

Yc 1.25H 2.5H 

R 0.2H 2.5H 

1 
See Figure 1: H = height of slope, m = grade of slope (rise/run).  

 

 
 The binary number “genetic algorithm” search 

method has received the most attention; see previous 
references.  This paper describes an alternative genetic 
algorithm presented by Haupt and Haupt (1998) that 
simply stores the combination of parameters as a vector 
in decimal (continuous) form rather than in binary form. 
The advantages of this approach include: manipulation of 
the parameters in crossover and mutation routines are 
more transparent and intuitive; and less computation time 
is spent on bookkeeping to convert the parameters back 
and forth between binary and decimal notation. 

The general algorithm involves stages: initialization, 
evaluation, sorting, reproduction (crossover) and 
mutation.  One performs the last three steps iteratively for 
a specified number of generations.  The processes of 
crossover and mutation allow the model to identify the 
global minimum even while converging on a local 
minimum through random mutations in the parameters.  It 
is important to use a set number of iterations as a 
stopping criterion, since a relative-error-based criterion 
may cause the algorithm to complete prematurely at a 
local minimum.  

 
2.2.1 Initial Population and Evaluation 
 
After the search domain is defined, the first step in the 
genetic algorithm is to generate an initial “population” of 
candidates for minimum global factor of safety. 
“Chromosomes” (Xc, Yc, R) containing randomly selected 
values for each of the parameters within their respective 
ranges compose this initial population. The size of the 
initial population is an important parameter in the genetic 
algorithm. The factor of safety Fs is then evaluated for 
each chromosome using RFEM. 
 
2.2.2 Sorting 
 
Once the factors of safety have been evaluated for the 
current population, they are sorted from lowest to highest 
global factor of safety. This is in preparation for the 
reproduction and mutation processes, where only the 
most optimal configurations carry their “genes” through to 
the next generation. 
 
2.2.3 Reproduction (Crossover) 
 
It is through crossover that the genetic algorithm is able 
to converge on a particular value through the process of 
natural selection. The reproduction process begins by 
selecting a specified upper portion of the population 
(typically 50%) to enter the mating pool. This represents 
“survival of the fittest” as only the most optimal proportion 
of the population is able to pass traits on to the next 
generation. The most optimal solution(s) (typically ~10-
15%, but rounded up to the nearest integer) are copied 
directly into the next generation. This means that the 
search routine always keeps the most optimal solution so 
that the minimum global factor of safety never increases. 
This is akin to the fittest members of the population 
having greater longevity and surviving for an extra 



“mating season” (in addition to passing their genes on to 
the next generation). 

The algorithm then assigns appropriate weights to the 
members of the mating pool according to the 
corresponding global factor of safety by the following 
operations: 
 

1. Subtract the minimum factor of safety of the 
chromosomes not selected for reproduction from 
the factors of safety of all chromosomes 
selected for reproduction. This reverses the 
weighting scheme, as this is a minimization 
problem. 

2. Divide each of the (reversed) factors of safety in 
the mating pool by the sum of the (reversed) 
factors of safety to obtain the individual weight of 
each. 

3. Add the sum of the weights for lower factors of 
safety to obtain the cumulative weight for each 
individual chromosome. 

 
Next, the algorithm selects pairs of parent 

configurations in order to fill the remaining slots in the 
next generation’s population. If there are an odd number 
of slots remaining, the program moves the next most 
optimal solution after those already deemed “fittest” 
directly into the next generation. It then carries out the 
selection process by generating random numbers 
between 0 and 1 and selects the first parent in the mating 
pool that has a cumulative weight greater than or equal to 
this value. This selection process, combined with the 
weighting scheme described previously, ensures that 
chromosomes with significantly lower factors of safety will 
have a greater relative probability of being selected, while 
a population consisting of chromosomes with nearly 
equal factors of safety will have a uniform probability of 
being selected 

The next step is to carry out the process of crossover 
in order to fill the population for the next generation, 
which begins by generating a random number between 0 
and 1. If this number is less than a specified probability 
(typically 70~90%), crossover occurs. Otherwise, the 
program copies the two parents directly into the next 
generation. If crossover is to occur, the program performs 
a form of interpolation on one parameter and crossover 
on the remaining parameters. Figure 3 shows a 
schematic of the process.  The figure uses the Y term as 
an example. Since the number β is a randomly generated 
between 0 and 1, the maximum change that the process 
applies to the parameters is the difference between them. 
Thus, if the parameters are similar then two similar 
offspring will be generated and vice versa if the two 
parameters are far apart. It should be noted that there are 
a number of ways in which crossover can occur, besides 
what is shown in Figure 3.  If X were selected for 
interpolation, either Y or R would have been randomly 
selected to be crossed; if R were interpolated, X or Y 
would have been crossed; thirdly, as in Figure 3, if Y is 
interpolated, either X or R is crossed. This removes bias 
toward crossing one parameter or the other in all cases. 
Finally, the program places the two offspring into the 
population for the next generation. This process repeats 
until the population for the next generation is filled. 
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Figure 3.  Determination of chromosomes via crossover.  

 
 
2.2.4 Mutation   
 
The process of mutation allows the genetic algorithm to 
survey the search region for alternative minima. It 
prevents the algorithm from converging too quickly on a 
local minimum and allows the algorithm an exit from the 
region of a local minimum if it finds a lower value; i.e., the 
global minimum.  If a lower minimum exists, it may take a 
number of generations for the algorithm to find it; in fact, 
the closer the current minimum is to the global minimum 
without being in the region of the global minimum, the 
less probable it is to locate the global minimum. This is 
the main reason why setting the number of generations is 
preferable to a convergence criterion for the genetic 
algorithm. The number of mutations on a given 

generation is  
mut mut pop fitn =3×p ×(n -n )  with nmut = total 

number of mutations; pmut = probability of mutation; npop = 
number of chromosomes in population; and nfit = “fittest” 
proportion of population.  Table 2 lists values used here. 
 
 
Table 2.  Parameters used for optimization 
 

Population (npop) 15 

Fittest Population (pfit = nfit / npop) 0.10 

Mating Pool Proportion (pmat = nmat / npop) 0.50 

Crossover Probability (pcross) 0.90 

Mutation Probability (pmut) 0.25 

Number of Generations (ngen) 100 

Following the crossover process of each generation, a 
vector of (chromosome, parameter) addresses are 
selected (excluding the “fittest” proportion). For each 
location selected for mutation, the program selects a 
random value within that parameter’s corresponding 
range to replace the current value.  
 
 
3 NUMERICAL EXAMPLES 
 
This study considered various scenarios.  The essence of 
the genetic algorithm together with the RFEM (and its 
advantages) may be illustrated by considering the results 
of two particular cases.  The parameters E, v, φ and c 



denote elastic modulus, Poisson’s ratio, friction angle and 
cohesion, respectively.   
 
3.1 Case 1 – Layered Embankment 
 
Case 1 is an embankment consisting of three strata, plus 
a bottom layer for bedrock. The upper and lower strata 
are identical layers of sand with φ = 40°, E = 1.0x10

5
 kPa, 

and ν = 0.33.  The middle stratum is a layer of mixed soil 
with φ = 10°, c = 30 kPa, E = 5x10

4
 kPa, and ν = 0.45. 

The geometry of the slope is defined by m = 5/6, H = 25 
m (see Figure 1), layer thicknesses of 12.5 m for the 
sand and 5 m for the mixed soil and γ = 18.5 kN/m

3
 for all 

soils. The bedrock lies 5 m below the base of the slope.  
Minimum factors of safety using RFEM and Bishop’s 
method together with the genetic algorithm were obtained 
for several runs, each one being a full analysis.  

Table 3 summarizes the statistics from the runs, with 
Figure 4 presenting the minimum Fs. Originally 5 runs 
were carried out to confirm that the algorithm would 
converge to a consistent minimum Fs. One observes from 
the figure that Fs is relatively constant when using 
Bishop’s method for slope stability, but the RFEM 
predictions show sensitivity to the (random) seed value.  
Additional runs were therefore completed to further 
investigate sensitivities. The sensitivity that was originally 
noted was confirmed.  More important is the observation 
that the minimum value was achievable only after 65 
runs.  In other words, there is no guarantee that a genetic 
algorithm will converge quickly. It depends on the 
sensitivity of the evaluation function to input.   Table 3 
clearly shows that there is considerable variation in 
critical failure surface compared to changes in minimum 
Fs for this particular problem. The RFEM stability 
procedure predicted a lower global minimum. 
 
 
Table 3.  Case 1: Genetic algorithm statistics for 85 runs. 
 

  Xc (m) Yc (m) R (m) Fs 

  Bishop 

   Average 10.97 44.38 39.55 1.028 
SD 3.83 6.81 7.05 0.010 

Min. 1.25 31.36 26.26 1.011 
Max. 16.44 58.21 53.62 1.051 

       RFEM 
   Average 10.18 44.61 39.47 0.95 

SD 4.56 7.68 8.06 0.10 
Min. 0.36 25.51 23.54 0.67 
Max. 17.16 63.48 58.98 1.10 

 
 
Figure 4. Minimum factor of safety as function of run. 
 
 

The critical surface for run 5 (minimum Fs ≈ 0.84) is 
shown in Figure 5, along with the variation of local Fs 
along the failure surface as determined from the sliding 
law; see Stolle and Guo (2008).  An examination of the 
local factors of safety along the slip surface reveals that 
Fs is highest near the base of the failure surface and 
steadily decreases as one moves up the surface. This is 
expected as the level of confinement also decreases as 
one moves up the surface.  Although the mixed soil is the 
key for the failure mode given that the Fs is slightly 
greater than 1 in the sand, the transfer in load due to the 
instability of the mixed soil causes the local factors of 
safety to further decrease in the sand when load is 
redistributed. Bishop’s procedure was not capable of 
transferring load and therefore the search for the 
minimum tended to focus on mechanisms that were 
restricted to the sand. This simple example demonstrates 
the importance of accommodating load redistribution in 
stability analysis. 
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Figure 5. Predicted failure surface (RFEM) for run 5.  
 
 

The minimum factor of safety corresponding to the 
RFEM analysis was found to be approximately 0.61.  



Figure 6 shows the critical surface and compares it with 
that predicted when using the Bishop algorithm (solid line 
for RFEM,  dashed line for Bishop’s method).  The 
surface in Figure 6 is not much different from that of 
Figure 5.  
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Figure 6. Failure surface for global minimum, Case 1. 
 
 
3.2 Case 2 – Narrow, Weak Layer 
 
Case 2 corresponds to a slope similar to that used by 
Fredlund & Krahn (1977) for studying the various 
classical methods of slope stability analysis.  The slope 
consists of a dense, mixed soil lying over a bedrock base.  
At the interface of these two layers, there is a very thin 
layer of weak frictional sand. The upper layer is 
characterized by  γ = 18.85 kN/m

3
, φ = 20°, c = 29 kPa,  

E = 7.5x10
4
 kPa, ν = 0.4, and has a thickness of 12.2 m. 

The thin middle layer is weak frictional sand having γ = 
18.85 kN/m

3
, φ = 10°, E = 5.0x10

4
 kPa, ν = 0.45, and is 

0.5 m thick. The slope has a grade m = 0.5 with H = 12 
m.  Since their paper only considers classical methods of 
analysis, it does not provide values for elastic modulus or 
Poisson’s ratio, so these values were assumed. 

The emphasis with this example is the effect of the 
number of slices used on the global factor of safety.  
Figure 7 compares the predictions from the Bishop’s and 
RFEM simulations.  It is clear that the minimum factor of 
safety for each method levels off above ≈ 10 slices.   
There is a slight increase for Bishop’s method, but this 
may be due to slight increased numerical errors when the 
slices become thinner. One observes that Bishop’s 
method predicts lower Fs, which may indicate that the 
method is conservative due to the simplifying 
assumptions. One must, however, be careful with making 
conclusions and generalizing as there are there are 
special cases (such as Case 1) where RFEM predicts 
lower values as it is capable of accommodating failure 
modes resulting from stiffness-dependent load transfer, 
which Bishop’s method ignores.  

Figure 8 compares the critical surfaces predicted by 
each stability analysis procedure for the 10 slice 
analyses. The corresponding local safety factors (RFEM) 
are also shown. Both predict similar critical surfaces, 
although the minimum factor of safety for each is 
different.  With the RFEM one gets a better picture of the 
way the slope moves. While there is a rotation for both 

procedures, for RFEM, greater relative movement 
between slices is observed at the crest, which is 
consistent with the local Fs, being smaller; i.e., large 
movements being consistent with greater yielding.  
 
 

 
 
Figure 7. Comparison of factors of safety from Bishop’s 

and RFEM analyses. 
 

 
 

 
 
 
Figure 8. Comparison of failure surfaces from Bishop’s 

and RFEM analyses. 



4 CONCLUDING REMARKS 
 
Only a few results have been shown in this paper.  
Nevertheless, observations presented in this section take 
into account the experiences from the entire study. This 
study makes the following conclusions: 
 

 For homogeneous slopes, Bishop’s method and 
RFEM analysis produce comparable results both in 
terms of the numerical value of the global minimum 
factor of safety and the location of the critical slip 
surface. 

 For slopes with multiple strata, it is important to 
consider whether the different layers have 
significantly different values for the stiffness terms, 
E and ν. If the values differ significantly, classical 
approaches such as Bishop’s method may not give 
accurate numerical estimates of the global minimum 
factor of safety. This is likely due to how the soil 
mass transmits lateral stresses, inducing shear flow 
along the interface between two strata. 

 For slopes with multiple strata, Bishop’s method and 
RFEM analysis produce comparable results for the 
location of the critical slip surface. It may be most 
computationally efficient to use Bishop’s method 
analysis to arrive at the critical slip surface, but 
finally evaluate the actual factor of safety using 
RFEM.  Nevertheless, converging to a global 
minimum requires more generations for a multilayer 
slope. 

 For cohesionless and mixed material slopes, the 
(Xc, Yc, R) parameters that define the critical surface 
may vary considerably for a given Fs. This implies 
that such slopes may be less sensitive to variations 
in the macrostructure of the slope (e.g. inclusions 
such as boulders) as there is a wide range of 
equally critical failure surfaces. 

 For slopes of cohesive material with φ = 0°, the 
critical surface tends to be more unique, with 
minimal variation in the (Xc, Yc, R) parameters. This 
means that if there is a region of localized strength 
along the critical surface (e.g. a shear key), stability 
increases significantly. The reverse is true for 
regions of localized weakness along the critical 
failure surface. 

 The number of slices used in the analysis has an 
impact on predictions. With too few (< 10), the 
analysis overestimates the minimum factor of safety 
as an accurate representation of the failure surface 
geometry is lacking. On the other hand, too many 
slices may prove computationally inefficient and 
introduce an undesirable level of numerical error 
into the computation. It is therefore optimal to use a 
balanced number of slices in the range [20, 30] to 
get an accurate solution while keeping the 
computational expense in a satisfactory range. 

 
The following was observed when comparing 

predictions by binary number and continuous parameter 
algorithms at the beginning of the study: 
 

 The binary number method tends to be more 
powerful at random searching for a given set of 

genetic algorithm parameters. This gives the binary 
number method an advantage in situations where 
there are many local minima because it is more 
likely to discover the region of the global minimum. 
The binary number method is therefore best suited 
to situations where a minimum number of runs are 
necessary due to either time or computational 
constraints since it is more likely to find the global 
minimum in fewer runs. 

 The continuous parameter method, while slightly 
less effective at conducting a random search of the 
minimum Fs, it does tend to run faster due to less 
bookkeeping required in converting to and from 
binary numbers during each iteration. In most 
situations, the ability to do more runs in less time is 
advantageous because having more output 
provides a better idea of how unique the critical 
surface is and how much influence it has on overall 
slope stability. 

 
Although the procedure has been tested on various 

slopes, additional testing is required to check robustness 
of the methodology and influence of interlayer stiffness 
on the minimum factor of safety, as well as fully explore 
the limitations of the rigid finite element procedure.   
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