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ABSTRACT 
Optimal partitioning of data-logged soil profile can be implemented using a spreadsheet and VBA programming. The 
basic assumption is that geo-stratification of soils is closely related to the sedimentary cycle or depositional 
environment. This stratification is reflected in various soil property test and indexes, and can be determined through 
geophysical testing, or the CPT test. Within the same geological layer, the dispersion of various/multi-parameter 
readings is smaller than that between neighbouring layers. Optimal stratification is equivalent to minimizing the 
summation of the dispersion of ‘internal’ indexes for each individual layer, and maximizing the summation of the 
dispersion of ‘external’ indexes of each individual layer relative to all layers. The calculation includes multiple iterations. 
The methodology may also be used for geotechnical zoning for site characterization. Examples are presented for 
illustrative purposes. 
 
RÉSUMÉ 
Partitionnement optimale du profil de sol de données enregistrées peut être implémenté à l'aide d'une feuille de calcul 
et de la programmation VBA. Le postulat de base est que geo-stratification des sols est étroitement liée au cycle 
sédimentaire ou milieu sédimentaire. Cette stratification se reflète dans divers de test de propriété du sol et d'index et 
peut être déterminée au moyen de tests géophysiques, ou à l'épreuve du CPT. Dans la même couche géologique, la 
dispersion des divers/multi-parameter lectures est plus petite que celle entre les couches voisines. La stratification 
optimale est équivalente à minimiser la sommation de la dispersion des index « internes » pour chaque couche 
individuelle et en maximisant la sommation de la dispersion des index « externes » de chaque couche individuelle par 
rapport à tous les calques. Le calcul comprend plusieurs itérations. La méthodologie peut également être utilisée pour 
géotechniques zonage pour la caractérisation des sites. Des exemples sont présentés à titre indicatif. 
 
 
 
1 INTRODUCTION 
 
For design and contracting purposes, site-specific 
geotechnical investigations are required for civil 
engineering projects. Geophysical and in-situ probes are 
commonly used techniques for geotechnical studies. 
These ‘indirect’ methods of determining geo-stratification 
offer good cost-benefit, accuracy and speed. Since soil 
samples are not obtained indirect methods of data 
interpretation must be utilized in evaluating various soil 
types of the strata encountered (Mayne, 2009). 

An interested example was reported by Tumay (2000), 
which developed a continuous intrusion miniature cone 
penetration test (CIMCPT) system for use in rapid and 
economical shallow-depth characterization of sites, 
especially at rapidly locating thin slip surface by a 4 mm-
depth increments sounding. For such case, delicate data 
interpretation is essential. Optimal partitioning provides a 
tool to aid in the interpretation of fine scale geo-
stratification. 

The fundamentals introduced in this paper are not 
new in mathematics and the geosciences but may not be 
familiar to geotechnical engineers. Readers can find an 
algorithm for calculating optimal partitions of one-
dimensional data sets as described by Fisher (1958), and 
some other implementations of the algorithm, e.g., 
FORTRAN by McRae (1971), Turbo Pascal by Lindberg 
(1990), and Hawkins & Merriam (1973) for segmenting 
well-log data. 

 

 
2 FUNDAMENTALS 
 
In Figure 1, tip resistances, qt changes with depth. This 
kind of soil behaviour may be a reflection of the soil 
genesis and geological forces, operational uncertainties 
of data acquisition system, and a multitude of random 
unknown. In terms of analytics, the phenomenon can be 
decomposed into three components: 
 
 

ijiij ax    

(i =1, 2, 3; j = 1, 2,…, ni)  [1] 
 
 
Where μ is the grand mean; ai is the contribution by 
behavior of layer i itself; and εij is random error of jth 
observation in i layer, which generally follows N(0, σ

2
) for 

most of known soil types. In fact, almost all in situ soil 
soundings aim at finding { ai }, which coincides with SSY 
= SSE + SSR in the sense of the analysis of variance, 
where, SSY is the total sum of squares of the deviations 
of the reading around the grand mean corresponding to 
the sum of (xij -μ) in Equation [1]; SSE is the error sum of 
squares of the deviations of the reading around the three 
separate group means { ai } corresponding to the sum of 
the εij, also called squared distance; SSR is the sum of 
squares of the deviations of the group means from the 
grand mean corresponding to the sum of the ai. 



 

 

 
 
Figure 1. Partial CPT curve (data source: 
http://www.coe.lsu.edu/cpt/) and analytical form 
 

For the three soil layers profiled in Figure 1, a simple 
ANOVA – single factor analysis can find the total sum of 
squares SSY = 260718, the sum of squares of between-
groups SSR = 242087, and the error sum of squares SSE 
= 18631. F-Test shows the least squares partition is true. 
However, the conventional ANOVA only can help to 
determine if all the three means { ai }  in the profile are 
equal. The task here can be described with reference to 
statistics as: given a set (or some sets) n of numerical 
readings, and a positive integer K (<n), to find a set of 
cut-points for grouping the n into K mutually exclusive and 
exhaustive subsets such that the SSE is minimized. Since 
SST is a constant for a given system, to minimize the 
SSE is equivalent to maximizing the SSR. 

In practical terms, during soil explorations, one or 
several sets of sequential readings at certain vertical 
depth intervals are recorded. If several sets are recorded 
a multivariate geo-stratification problem is encountered. 
Which set of readings better reflects the stratification? 
What is the relevant system of weightings to be applied? 
In this regard, geotechnical engineer of the project has no 
equal. As a result, a complex matrix of initial 
measurements or datasheet would be required for soil 
profiling: 
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In which, n is sample size, m is criteria. The following 
steps present how to reach an optimization of least 
squares partition. 
 
2.1 Data Normalization 
 
Data normilzation is a form of data pre-processing. This 
step ‘cleans’ the data. This step aims at scaling the 
attribute data to fit in a specific range. There are different 
types of data normalization available. In this paper, the 
technique of Min Max Normalization is used. The method 
transforms a data reading to a dimensionless number 
which fits in the range [zmin, zmax], herein for [0,1] and 
obtain a matrix Znxm= [zij]: 
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(i = 1, 2, …, n; j = 1, 2, …, m) [3] 
 
 

In another usage in statistics, normalization refers to 
the division of multiple sets of data by a common variable 
in order to negate that variable's effect on the data, thus 
allowing underlying characteristics of the data sets to be 
compared. Normalization allows data on different scales 
to be compared, by bringing them to a common scale. In 
terms of levels of measurement, these ratios only make 
sense for ratio measurements where ratios of 
measurements are meaningful but, not for interval 
measurements where only distances are meaningful. 
 
2.2 Error Sum of Squares (SSE) Matrix Determination 
 
Any portion of the soil profile with multi-index/parameter 
readings can be considered as a single soil layer 
numerically. Numerical approaches of geo-stratification 
are in essence based on data manipulation regarding 
‘one dimensional’ or ‘single parameter’ observation. 
Therefore any multi-folded observations within any range 
of depth should be converted or reduced into a column 
vector of observations or single measures on each 

element reading with depth as its dimension, say, Xnxm 

Xnx1, or Znxm Znx1. Such conversion is indirectly carried 
forward in the determination of the SSE matrix D (= [dij]). 
Also, the first principle component, or factor analysis 
method, can be used to address any multivariate 
stratification problem. 

The SSE of a length [i, j] of segment of multi-index 
readings is calculated as dij, 

http://www.coe.lsu.edu/cpt/
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given β (index) for [i, j] segment, which is the separate 
group mean in terms of statistics. 

Equation [4] represents the deviation of the raw data 
around its average value for the separate segment. In 
terms of the analysis of variance, dij is called the sum of 
squares within groups, or simply the squared distance. 

Since dij = 0 for i = j and, dij = dji for i  j, the ordered 
set of n ‘readings’ (one-parameter) can be partitioned into 
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segments, thus it is only necessary to calculate n(n-1)/2 
of dij, say: 
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2.3 Set Target Function 
 
Assuming the grouping problem being by way of k layers 
out of n readings, say, {i1 = 1, i1+1,…, i2-1}, {i2 = 1, 
i2+1,…, i3-1}, …, {ik = 1, ik +1,…, n}, the target function will 
be, 
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For a given n and k, i1 = 1 < i2 <…< ik < n, ik+1 - 1 = n. 
The problem reduces to a search for the contiguous 
partitions determined by k-1 cut-points that minimised the 
target function the ‘tilde’ e, for which noted as e[p(n,k)]. 
 
2.4 Optimization Calculation 
 
The optimization algorithm involves multiple iterations. To 
find an optimal partition of 2 contiguous layers, the 
equation [6] has, 
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By manipulating the cut-point j, subject to the 

constraint 2  j  n, the target function is minimized, and 
the j thus obtained is the optimal partitioning point. 

For k optimal partitions, firstly assuming 
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This is equivalent to stating that the ordered set of n 
readings is initially partitioned into 2 contiguous layers. 
Then, the {1, 2,…, j -1} partition, will be partitioned into k - 
1 layers, while the {j, j+1, …, n} itself constitutes a single 

layer. Note that k  j  n. 
By changing j in equation [8], the kth layer with jk cut-

point can be sorted out by optimization iterations, say,   
{jk, jk+1, …, n}. Then equation [9] is used to find the next 
layer, { jk-1, jk-1+1, …, jk -1} . 
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These operations are repeated until all optimal 
partitions are determined. 

Such optimal grouping problem can also be simply 
described as: given n readings and g partitions (g < n), to 
group the n into g mutually exclusive and exhaustive 
subsets, say, {1, 2,…, p}, {p+1, …, q}, {…}, …, {v+1, n}, 
such that the sum of squares within the individual groups, 
SSE = D(1,p)+ D(p+1,q)+…+ D(v+1,n) is minimized. 

The appendix presents the VBA code which has been 
thoroughly tested. As a benchmark, interested readers 
can exercise a short problem: (3, 2, 3.05, 1, 4.05, 5), the 
answers are shown in Table 1. Note that cut-points 
themselves should belong to the immediately upper 
layers.  
 
Table 1. Benchmark example by hand calculation. 

Partitions Cut-points SSE 

2 4 0.205 
3 3, 4 0.072 
4 3, 4, 5 0.043 
5 1, 2, 3, 4 0.029 

 
 
3 EXAMPLE 
 
Benchmarking data can be found at 
http://www.coe.lsu.edu/cpt/La3059T1_English.txt. Table 2 
shows the results of different systems of segmenting 
expressed by cut-points starting from the ground surface. 
Figure 2 presents the SSE versus soil layers partitioned. 
The figure shows that four layers are sufficient to 
optimally partition the soil strata. Figure 3 shows the four 
soil layers profiled. 
 

 

http://www.coe.lsu.edu/cpt/La3059T1_English.txt


 

 
Table 2. Benchmark example by spreadsheet. 

Layers Cut-points 

2 1537         
3 1688 1537        
4 1721 1691 1537       
5 1948 1721 1691 1537      
6 1948 1723 1688 1669 1537     
7 1948 1723 1688 1665 1639 1537    
8 1948 1781 1721 1688 1665 1639 1537   
9 1948 1906 1881 1723 1688 1665 1639 1537  
10 1948 1906 1881 1721 1691 1688 1665 1639 1537 
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Figure 2. SSE versus segments 
 
 
4 SUMMARY 
 
The approach described in this article has roots in 
statistic theory. The approach aims to help detect 
changes in subsurface strata numerically, and as such 
is best applied to in-situ data acquisition systems such 
as the CPT. 

VBA was used to implement the optimal partition 
method described in this paper. The built-in 
optimization tool Solver that resides in Microsoft Excel 
could be used to reduce the programming effort. An 
example of the use of Solver for an optimal search 
application is presented by Low and Tang (1997). 

To apply the optimal partitioning approach efficiently 
and appropriately, users need to exercise judgement 
such as is required for any data interpretation method, 
e.g., are the partitions reasonable, do they provide 
partitions that are meaningful for geotechnical design. 
It is also important and basic to implement an approach 
such as this based on high quality and reliable raw 
data, e.g., any outlier and abnormal data resulting from 
malfunction of the data acquisition system should be 
dismissed at the data pre-processing stage. 

The optimal partition method discussed herein is 
relative to only normally distributed one-dimensional 
data for each individual group. For other modes of 
data, see Fitzgibbon et al (2000). A 2D-type least 
squares partition is possible but may not be 
computationally practical. 
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Figure 3. Four layers profiled 
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APPENDIX: VBA CODE 
 
Public Function OptimalPartition(arra As Range, t) 
    Dim tt, x, yy, xmax, xp, xmin, xm, s, d, e, z, xm3, i As Integer, j 
As Integer, k As Integer, l As Integer, m As Integer, n As Integer, 
suma As Double, sumc As Double, sumv As Double, q As 
Integer, nh As Integer, ng As Integer, r As Integer, w As Double, 
u As Double, xmm As Double, c As Integer 
    Const rr = 1 
    x = arra 
    k = t 
    r = arra.Rows.Count 
    c = arra.Columns.Count 
 
    nh = r - 1 
    ng = r * (r + 1) * 0.5 
     
    ReDim tt(1 To r, 1 To c) 
    ReDim xmax(1 To 50) 
    ReDim xp(1 To rr, 1 To t) 
    ReDim xmin(1 To 50) 
    ReDim xm(1 To 80) 
    ReDim s(1 To 80) 
    ReDim d(1 To 3200) 
    ReDim e(1 To 80, 1 To 100) 
    ReDim z(1 To r, 1 To c) 
    ReDim xm3(1 To 100) 
   
  'Data normalization 
    For j = 1 To c 
        For i = 1 To r 
            tt(i, j) = x(i, j) 
        Next i 
        xmax(j) = Application.Max(tt) 

        xmin(j) = Application.Min(tt) 
    Next j 
     
    For j = 1 To c 
        xmm = xmax(j) - xmin(j) 
        For i = 1 To r 
            z(i, j) = (x(i, j) - xmin(j)) / xmm 
        Next i 
    Next j 
     
    'To calculate the matrix of the sums of squares within 
changeable layers 
    For i = 1 To ng 
        d(i) = 0 
    Next i 
     
    For j = 1 To r - 1 
        For i = j + 1 To r 
            sumc = 0 
         For l = 1 To c 
            suma = 0 
            For q = j To i 
             suma = suma + z(q, l) 
            Next q 
            suma = suma / (i - j + 1) 
             
            For q = j To i 
                sumc = sumc + (z(q, l) - suma) ^ 2 
            Next q 
         Next l 
        sumv = r * (j - 1) + i - (j - 1) * j / 2 
        d(sumv) = sumc 
        Next i 
    Next j 
     
    'To find the min sum of squares over k layers divided into 
    For i = 1 To nh 
        For j = 1 To k 
            e(i, j) = 0 
        Next j 
    Next i 
     
    For j = 1 To r - 1 
        For i = 1 To r - j 
        sumv = r * i + r - j + 1 - i * (i + 1) * 0.5 
        s(i) = d(i) + d(sumv) 
        Next 
         
        suma = s(1) 
        e(j, 2) = 1 
        For i = 1 To r - j 
            If suma < s(i) Then GoTo 1 
        suma = s(i) 
        e(j, 2) = i 
1: 
        Next i 
        xm(r - j) = suma 
    Next j 
         
    nextrow = 
Application.WorksheetFunction.CountA(Range("A:A")) + 1 
    Cells(nextrow, 1) = "L2=" 
    Cells(nextrow, 2) = Math.Round(xm(nh), 2) 
     
    w = k - 1 
    For l = 3 To k 
        nh = r - l + 1 
        For j = 1 To nh 
            For i = 1 To nh - j + 1 

http://onlinepubs.trb.org/onlinepubs/trnews/rpo/rpo.trn207.pdf
http://onlinepubs.trb.org/onlinepubs/trnews/rpo/rpo.trn207.pdf


 

                sumv = r * (l + i - 1) - j + 1 - (l + i - 1) * (l + i - 2) * 0.5 
                s(i) = xm(i) + d(sumv) 
            Next i 
             
            suma = s(1) 
            e(j, l) = l - 1 
            For i = 2 To nh - j + 1 
                If suma <= s(i) Then GoTo 2 
                suma = s(i) 
                e(j, l) = i + l - 2 
2: 
            Next i 
             
            sumv = nh - j + 1 
            xm(sumv) = suma 
        Next j 
         
    nextrow = 
Application.WorksheetFunction.CountA(Range("A:A")) + 1 
        Cells(nextrow, 1) = "L" & l & "=" 
        Cells(nextrow, 2) = Math.Round(xm(nh), 2) 
    Next l 
     
    xp(rr, 1) = Math.Round(xm(nh), 2) 
     
    'To find the optimal partition of k layers divided into 
    For l = 2 To k 
    nextrow = 
Application.WorksheetFunction.CountA(Range("C:C")) + 1 
    Cells(nextrow, 3) = "k=" & l 
        sumv = l - 1 
        w = r 
        For i = 1 To k 
            xm3(i) = 0 
        Next i 
        For j = 0 To l - 2 
            u = l - j 
            sumv = r - w + 1 
            w = e(sumv, u) 
            u = j + 1 
            xm3(u) = w 
        Next j 
         
        For i = 1 To l - 1 
       nextrow = 
Application.WorksheetFunction.CountA(Range("C:C")) 
        Cells(nextrow, i + 3) = xm3(i) 
             xp(rr, i + 1) = xm3(i) 
        Next i 
    Next l 
     
   OptimalPartition = xp 
 
    Columns("A:A").Select 
    With Selection 
        .HorizontalAlignment = xlRight 
    End With 
     
    Columns("B:B").Select 
    With Selection 
        .HorizontalAlignment = xlLeft 
    End With 
     
    Range("A1").Select 
    
End Function 


