
GPU-accelerated stress analysis in geomechanics 

 
Attila M. Zsaki 
Department of Building, Civil and Environmental Engineering – Concordia 
University, Montreal, Quebec, Canada 
 
 
 
ABSTRACT 
Design in geomechanics is often data-limited. This is alleviated by many simulation runs to account for the variability of 
material properties or the modeling of an extensively sized domain to evaluate the response of soils and rocks. Both 
approaches require considerable computational resources and time. The current line of graphics processing units is 
offering an alternative to traditional parallel computers. Through an illustrative example, this paper formulates the 
computation of field quantities using the boundary element method to run on graphics processing units. As a result, the 
computation of stresses and displacements around underground excavations were sped up by an order of magnitude. 
 
PRESENTACIONES TÉCNICAS 
Los diseños geomecánicos están frecuentemente muy limitados en lo referente a sus parámetros de entrada. Esto es 
compensado, ya sea con la simulación de muchos escenarios para lograr tener en cuenta la variabilidad en las 
propiedades de los materiales, o con la modelación de dominios de gran dimensión para evaluar la respuesta de suelos 
y de rocas. Ambas opciones requieren recursos computacionales y tiempo considerables. Las unidades de 
procesamiento gráfico disponibles en el momento ofrecen una alternativa a la tradicional computación paralela. A través 
de un ejemplo ilustrativo, esta publicación formula el uso de unidades de procesamiento gráfico para el cálculo de 
modelos empleando el método de elementos de frontera. Como resultado, el tiempo de cálculo de esfuerzos y de 
desplazamientos en las zonas cercanas a excavaciones subterráneas fue reducido en un orden de magnitud. 
 
 
 
1 INTRODUCTION 
 
Perhaps what sets apart modeling in geomechanics from 
other engineering disciplines is the general lack of 
available data to characterize geomaterials throughout the 
domain modeled, and the extent and material boundaries 
within the domain, particularly for three-dimensional 
analyses. These difficulties are often addressed by using 
probabilistic simulations to sample material properties 
over their credible range and compute stresses and 
displacements throughout a region in the soil or rock. 
Common to these approaches is that both require 
significant computational effort. The sampling process, 
even for a few key material properties requires a large 
number of samples from a distribution to arrive at 
statistically satisfactory representation of the outcome. 
While in a boundary element formulation, the response of 
a rock mass is evaluated by computing field quantities at 
a large number of points.  

Fortunately both of these scenarios are such that each 
sampling and in the probabilistic simulation or calculation 
of stresses at a field point can be done independently of 
any other sample or point in the domain. Traditionally this 
was exploited to draft algorithms that can be cast to run in 
parallel and thus these were aptly named as 
‘embarrassingly parallel’ for this reason (Zsaki and Curran 
2002). However, even at this time the cost and availability 
of computational resources can hinder the widespread 
use of such approaches.  

In the recent years, however, the emergence of 
powerful commodity graphics hardware with many 
processing units (GPUs) potentially enables the same 
computations to be performed at the fraction of the cost 

but with significant speedups. This paper aims at 
highlighting the capability of GPUs for use in calculations 
often performed in geomechanics. An illustrative example 
demonstrates the speedup achievable and the 
implementation issues. 
 
 
2 PARALLEL COMPUTATION ON GPUS 
 
The GPUs, found in computers today, were designed to 
meet the growing needs of real-time 3D graphics and 
gaming industry. Internally, these devices are multi-cored, 
multi-threaded, highly parallel processors (NVIDIA Corp. 
2008). Their massive parallelism is suitable to graphics 
processing since many operations can be executed 
independently and the same operation is performed on 
many pixels or vertices at the same time giving rise to 
potentially high parallelism. In parallel processing 
terminology, their operation is fine-grained data-parallel 
and thread-parallel (NVIDIA Corp. 2008). These devices 
communicate with the host CPU over a high-bandwidth 
memory interconnect. Internally, the GPU’s operation is 
characterized by a thread that carries out the instructions. 
Threads are the basic building blocks with access to fast 
register memory and a considerably slower global 
memory of the GPU (NVIDIA Corp. 2008). A group or 
block of threads has access to a shared memory, which 
can be used to foster cooperation between threads. 
Communication between the GPU (often called device) 
and the CPU (referred to as host) is through a global 
memory. The practical implementation of a programming 
model requires allocation and transfer of memory storage 
for variables from the host to device, execution of the 



computation in the GPU using a kernel, and finally the 
memory transfer of results back to the host. Development 
using the NVIDIA compiler enables coexistence of C and 
GPU code in the same source file. The definition of GPU 
specific code is done using the CUDA (Compute Unified 
Device Architecture) directives and instructions (NVIDIA 
Corp. 2008). Thus separation of GPU code is 
accomplished using classifiers such as __global__ or 
__device__. CUDA contains most of the common 
mathematical functions available from C with the 
exception of a few such as a random number generator, 
for which a third party code can be used. Precision in 
floating point computation can be achieved using single 
precision or on more recent GPU architectures with 
double precision, which conforms to the IEEE-745 
standard (NVIDIA Corp. 2008). GPUs can run a large 
number of threads in parallel. However, there are 
limitations on the number of threads in a block, which is 
512 for the current generation of GPUs (NVIDIA Corp. 
2008). All these might change with the next generation of 
GPU architecture. The choice of the number of threads 
can be critical; if too few are used, the available parallel 
performance is not exploited, while if too many are 
scheduled, competition for resources can ensue. Also, it 
has to be kept in mind that the resources of a GPU are 
not allowed to be tied up for long stretches of time since it 
needs to refresh and redraw the screen as well. 
Commonly, the time limit is set at 5 sec (NVIDIA Corp. 
2008). However, the GPU can schedule thread execution 
interleaved with other duties. Therefore the execution of a 
single thread should be less than this time limit. An 
alternative is to use graphics processing cards based on 
NVIDIA’s TESLA architecture, which are compute only, 
effectively lifting the time limitation (NVIDIA Corp. 2008). 
Development using GPUs is not that dissimilar from other 
parallel programming development. However, it contains 
enough intricacies to warrant the demonstration of its 
basic principles using an example problem drawn from 
geomechanics. 
 
 
3 COMPUTATION OF FIELD QUANTITIES IN A 

BOUNDARY ELEMENT CODE 
 
The practical example chosen addresses a class of 
common computation in geomechanics, where the 
response of a geologic medium is investigated in the 
presence of underground excavations. Commonly this 
class of problems is modeled using the finite (FEM) or 
boundary element method (BEM). For a BEM approach, 
the solution is computed on the surface of an excavation 
and/or free boundary, however the main interest lies in the 
displacements and stresses (field quantities) within the 
medium. Often this response is captured at discrete 
points, be that in 2D or 3D, or field points. Without being 
specific about the formulation of the BEM or the 
dimensionality of problem, a computation of field 
quantities at any given point can be performed 
independently of calculation at any other point’s response. 
This could lend itself to a massively parallel 
implementation. As an example, a 2D BEM for elastic 
problems using constant elements, as appears in Kythe 

(1995), is adopted for GPU realization. Although this 
formulation is quite simple and might not be applicable to 
advanced modeling, it contains the essence of the BEM 
and since the goal of this paper is to present a GPU 
implementation rather than advocate the suitability of any 
particular method. If desired, other types of BEM 
formulations, once the discrete form of equations is 
derived, can easily implemented on GPUs. 

Given a domain and its boundary discretized into 
constant elements, such as shown on Figure 1, the 
essence of the BEM can be expressed using the notation 
developed in Kythe (1995). 

Equation 1 expresses the equilibrium of contributions 
from displacements (u), body forces (B) and tractions (p). 
The detailed discussion of the derivation of equation 6 is 
found in Kythe (1995). 
 

 

   

Hiju j = Bi + Gij p j
j=1

N

å
j=1

N

å    [1]

       

 

Figure 1. Domain discretized with constant boundary 
elements, after Kythe (1995) 
 

 

Once the solution of Equation 1 is computed, response 
of the system at field points can be obtained using 
Equations 2 and 3 for displacements and stresses, 
respectively, with additional quantities defined in 
equations 4 through 6. Quantities used in these equations 
are those derived and defined in Kythe (1995), and their 
detailed discussion in this paper is not presented since 
any BEM formulation can be used. 

 



 

u i( ) = u*b( )
k

k=1

l

å wk
ì
í
î

ü
ý
þs=1

M

å As + u* ds
C j

ò{ }
j=1

N

å p j

- p* ds
C j

ò{ }
j=1

N

å u j

                    [2]  

s ij = DijR
òò bdx1dx2 + DijpdsC

ò - Sij udsC
ò =

Dij dx1 dx2R
òò{ }

s=1

M

å bs + Dij dsC j
ò{ }

j=1

N

å p j

- Sij dsC j
ò{ }

j=1

N

å u j

             [3]                               

 

where, in two dimensions 
 

 

  

Dij = D1D2[ ] Sij = S1S2[ ]                                               [4] 

p = p1 p2[ ]
T

  

u = u1 u2[ ]
T

                                                                  

 

and for k=1,2 
 
 

Dk =
1

4p 1-u( )r

1- 2u( ) dkir, j +dkjr,i -dijr,k{ }

+2r,ir, jr,k

é

ë

ê
ê

ù

û

ú
ú

             [5]                                             

Sk =
m

2p 1-u( )r2

2
¶r

¶n

1- 2u( )dijr,k

+u dikr, j +d jkr,i( )
-4r,ir, jr,k

ì

í
ïï

î
ï
ï

ü

ý
ïï

þ
ï
ï

+

2u nir, jr,k + n jr,ir,k( )

+ 1- 2u( )
2nkr,ir, j

+n jdik + nid jk

æ

è
çç

ö

ø
÷÷

- 1- 4u( )nkdij

é

ë

ê
ê
ê
ê
ê
ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú
ú
ú
ú
ú
ú

             [6] 

 

 

The previous set of equations, given the solution at 
boundaries, is evaluated at every field point. In a serial 
CPU code, a loop is created to compute stresses and 
displacements for the field points. The BEM code is a 
modified version of the one found in Kythe (1995), which 
should be consulted for exact definition and meaning of 

variables. The salient features of this implementation are 
summarized in Table 1. 
 
 
Table 1. CPU serial code for BEM field point computations 
 

// Compute stress and displacement at field points 
 
//  For all field points  
for (k=1;k<=L;k++) { 
  
  // For all boundary elements 
  for (j=1;j<=N;j++) { 
 
    kk=j+1; 
 
    // Gaussian quadrature to compute the elements  
    //  of H and G  
    Quad11(Xi[k],Yi[k],X[j],Y[j],X[kk],Y[kk],&H11,&H12, 
                  &H21,&H22, &G11,&G12,&G22); 
 
    // Computing the displacement values 
    displ[2*k-1]+=F[2*j-1]*G11+F[2*j]*G12-Bc[2*j-1]*H11 
                          -Bc[2*j]*H12; 
    displ[2*k]+=F[2*j-1]*G12+F[2*j]*G22-Bc[2*j-1]*H21 
                       -Bc[2*j]*H22; 
 
    // Computing the coefficients used in  
    //  stress computation 
    Stress(Xi[k],Yi[k],X[j],Y[j],X[kk],Y[kk],&dx11, 
                &dy11,&dx12,&dy12,&dx22,&dy22,&sx11, 
                &sy11,&sx12,&sy12,&sx22,&sy22); 
 
    // Computing the stress values 
    stress[3*k-2]+=F[2*j-1]*dx11+F[2*j]*dy11-Bc[2*j-  
                            1]*sx11-Bc[2*j]*sy11; 
    stress[3*k-1]+=F[2*j-1]*dx12+F[2*j]*dy12-Bc[2*j- 
                            1]*sx12-Bc[2*j]*sy12; 
    stress[3*k]+=F[2*j-1]*dx22+F[2*j]*dy22-Bc[2*j-
1]*sx22 
                         -Bc[2*j]*sy22; 
  } 
} 

 
 

 
The preceding code fragment encapsulates all the 

major function calls and statements describing the 
computation of field quantities. The BEM code was run 
fifty times to gather performance statistics on a problem 
shown on Figure 2, which models a circular hole 
embedded in an infinite elastic medium. The location of 
field points is shown in the shaded area. The tests used 
one million field points equally distributed in the enclosed 
area. Average computation time was 34.73 sec with a 
standard deviation of 0.016 sec on a current generation 
MacBook Pro. 

The strategy to convert the code for GPU is as follows; 
the computation is moved from the CPU to the GPU with 
the additional expenses of memory allocation on the GPU 
and memory transfer to and from the GPU. The pseudo 
code for GPU implementation is shown in Table 2 



 
 
 

 

 

Figure 2. A circular hole in an infinite medium and location 
of field points for computation 

 
 
 
 
Table 2. GPU code for field quantity computations 

 
// Main GPU kernel 
__global__ void Inter11GPUKernel(float* Bc, float* F, 
float* Xi, float* Yi, float* X, float* Y, float* stress, float* 
displ, int N, int L, float nu, float mu) 
{ 
 // Determining thread ID  
 idx=blockIdx.x*blockDim.x+threadIdx.x; 
 
  idxPlus1=idx+1; 
 
  if (idxPlus1<L+1) { 
  
    // For all boundary elements 
    for (j=1;j<=N;j++) { 
 
      kk=j+1; 
 
      Quad11Kernel(Xi[idxPlus1],Yi[idxPlus1], 
                X[j],Y[j],X[kk],Y[kk],&H11, 
                &H12,&H21,&H22,&G11,&G12, 
                &G22,nu,mu); 
         
      displ[2*idxPlus1-1]+=F[2*j-1]*G11+F[2*j]*G12 
                                        -Bc[2*j-1]*H11-Bc[2*j]*H12; 
      displ[2*idxPlus1]+=F[2*j-1]*G12+F[2*j]*G22 
                                     -Bc[2*j-1]*H21-Bc[2*j]*H22; 
            
     StressKernel(Xi[idxPlus1],Yi[idxPlus1],X[j],Y[j],X[kk], 
        Y[kk],&dx11,&dy11,&dx12,&dy12,&dx22, 
        &dy22,&sx11,&sy11,&sx12,&sy12,&sx22, 
        &sy22,nu,mu); 
     

      stress[3*idxPlus1-2]+=F[2*j-1]*dx11 
                       +F[2*j]*dy11-Bc[2*j-1]*sx11-Bc[2*j]*sy11; 
      stress[3*idxPlus1-1]+=F[2*j-1]*dx12+F[2*j]*dy12 
                       -Bc[2*j-1]*sx12-Bc[2*j]*sy12; 
      stress[3*idxPlus1]+=F[2*j-1]*dx22+F[2*j]*dy22 
                       -Bc[2*j-1]*sx22-Bc[2*j]*sy22; 
    } 
  } 
} 
 
void main (…) 
{ 
   … 
 
  // Allocating arrays on the GPU 
  size_t sizeForDevice_displ;  
  sizeForDevice_displ=2*(L+1)*sizeof(float); 
  cudaMalloc((void**)&displDevice, 
                            sizeForDevice_displ); 
  
  // Similarly allocating memory for: stressDevice, 
  // XiDevice, YiDevice, XDevice, YDevice,  
  // FDevice, BcDevice 
  … 
  
  // Transferring the contents of arrays to the GPU 
  cudaMemcpy(displDevice,displ, 
        sizeForDevice_displ,cudaMemcpyHostToDevice); 
  cudaMemcpy(stressDevice,stress, 
      sizeForDevice_stress,cudaMemcpyHostToDevice); 
  … 
  cudaMemcpy(BcDevice,Bc,sizeForDevice_Bc, 
                                         cudaMemcpyHostToDevice); 
 
  // Establishing block size and number of threads  
  numThreadsPerBlock=100; 
  numBlocksPerGrid=L/numThreadsPerBlock 
                           +(L%numThreadsPerBlock==0 ? 0:1); 
  
  // Executing the main kernel on the GPU 
  Inter11GPUKernel<<<numBlocksPerGrid, 
          numThreadsPerBlock>>>(BcDevice, 
          FDevice,XiDevice,YiDevice, 
          XDevice,YDevice,stressDevice, 
          displDevice,N,L,nu,mu); 
 
  // Retrieving the results from the GPU 
  cudaMemcpy(displ,displDevice, 
        sizeForDevice_displ,cudaMemcpyDeviceToHost); 
  cudaMemcpy(stress,stressDevice, 
      sizeForDevice_stress,cudaMemcpyDeviceToHost); 

  
  // Freeing the memory  
  cudaFree(displDevice); 
  cudaFree(stressDevice); 
  … 
  cudaFree(BcDevice); 
 

 

 

Performance statistics gathered from fifty runs of the 
GPU code resulted in an average running time of 2.496 



sec with a standard deviation of 0.153 sec on a MacBook 
Pro with a NVIDIA GeForce 8600M GT. The speedup 
achieved on the MacBook Pro was almost 14. The split of 
computation versus memory transfer for this case study 
was as follows; 2.5% of time for memory transfer and 
97.5% for computation.  

An important observation can be made from the 
statistics gathered; the amount of time devoted to memory 
transfer and to subsequent computation can significantly 
affect the relative speedup achieved in a GPU 
implementation. Ideally, the memory transfer should be 
kept at minimum. However, in practice this greatly 
depends on the problem being solved. Similarly, the 
number of field points to compute can affect the speedup 
achieved, as shown in Figure 3, in which for the BEM 
setup, the number of field points was varied from 1000 to 
1000000 and the achieved speedup is plotted up. 

The speedup realized for the BEM calculation starts 
with about 8 and rises to 14 for the one million field points. 
However, the early gains level off at about 100,000 points 
and remains relatively flat giving rise to the maximum 
estimate of speedup of about 14 for this type of 
computation on this hardware. Thus, as the number of 
field points increases the achieved speedup increases as 
well, with even the smallest sample set generates a 
speedup of almost 8. This can be attributed to the ratio of 
computation and memory transfer. Thus it can be 
concluded that the expected and achieved speedup is 
intimately dependent on the type of computation and its 
algorithmic realization. This gives an a priori estimate of 
how much speedup can be anticipated in a massively 
parallel implementation of an algorithm running on a GPU.  
 
 
4 CONCLUSION 
 
Computation in geomechanics is characterized by 
determining the behaviour of a system consisting of rocks 
and soils using some form of numerical method. Due to 
the inherent spatial extent and variability of properties of 
the constituent materials, the computation considers 
either repeated sampling of these properties for some 
class of problems or computing the response of a system 
at a large number of locations. Both cases require 
considerable computational effort. Traditional parallel 
computing with many CPUs was able to expedite 
computations, however the cost of large parallel 
computers could hinder widespread use of such systems. 
With the rapid advances in graphics hardware a new 
alternative is available; graphics processing units that can 
be used as a massively parallel computer. However, only 
certain types of computations can be efficiently adapted to 
run on GPUs. Primarily, where the inter-thread 
communication and memory transfer can be kept at the 
minimum. This paper introduced the current concepts of 
GPU computing using CUDA and presented an illustrative 
exampleof numerical stress analysis using a BEM 
formulation implemented on GPUs. The GPU example 
was tested against the CPU only implementation and the 
achieved speedup was above ten-fold. This represents a 
significant speedup considering that the required 
hardware is already part of the system potentially paving 

the way for more complex and detailed numerical 
modeling in geomechanics. 
 
 
 

 

Figure 3. Speedup realized as a function of sample size in 
BEM field quantity computation 

 
 

 
ACKNOWLEDGEMENTS 
 
The research was supported by an NSERC Discovery 
grant held by the author. 

 

 
REFERENCES 
 
Kythe, P.K. 1995 An introduction to boundary element 

methods. CRC Press, Boca Raton, FL, USA. 
 
NVIDIA Corp. 2008 CUDA – Compute unified device 

architecture, Programming Guide, Version 2.0. NVIDIA 
Corp., Santa Clara, CA, USA. 

 
Zsaki, A.M. and Curran, J.H. 2002 Parallel computation of 

field quantities in an underground excavations 
analysis code. 5th NARMS and 17th TAC Conference, 
Toronto, Ontario, Canada, 671-677. 

 
 
 
 
 
 
 
 

 

0

2

4

6

8

10

12

14

16

0.00E+00 2.50E+05 5.00E+05 7.50E+05 1.00E+06

S
p

e
e

d
u

p

Number of samples (N)

Scaling of computation time with N

Speedup of computation

Equal CPU-GPU performance


