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ABSTRACT 
Reliability methods, in conjunction with more traditional design methods, have begun to play an increasingly important 
role in geotechnical projects. Such analyses offer a more rational approach to quantify risk by incorporating uncertainty in 
the input variables and evaluating the probability of failure for the system. While these concepts are relatively new to 
geological engineering, they require little additional effort beyond conventional analyses and provide a more complete 
definition of risk and safety. This eliminates the need for overly conservative design methods and allows a more 
economic design to be selected. This paper summarizes the main reliability methods available for geotechnical projects 
and presents the findings of a reliability analysis for an underground pillar design in limestone. 
 
RÉSUMÉ 
Méthodes de fiabilité, en conjonction avec des méthodes plus traditionnelles de design, ont commencé à jouer un rôle de 
plus en plus important dans les projets géotechniques. Ces analyses offrent une approche plus rationnelle pour 
quantifier le risque par l'intégration de l'incertitude des variables d'entrée et l'évaluation de la probabilité de défaillance 
du système. Bien que ces concepts sont relativement nouveaux en génie géotechnique, ils demanderont peu d'efforts 
supplémentaires plus des analyses classiques et de fournir une définition plus complète des risques et de sécurité. Ceci 
élimine le besoin pour des méthodes trop conservatrice et permet une design plus économique pour être choisi. Ce 
document résume les principales méthodes de fiabilité disponibles pour des projets géotechniques et présente les 
résultats d'une analyse de fiabilité pour un design pilier de métro dans le calcaire. 
 
 
1 INTRODUCTION 
 
Since the development of standardized field and lab 
testing procedures for the study of geological materials in 
the early 20th century, it has been understood that 
uncertainty is prevalent in both material and stress 
parameters. Unfortunately, present design methods have 
yet to adopt a logical basis for describing this uncertainty 
and assessing its impact on performance. Instead, 
deterministic approaches, which consider only a single set 
of representative parameters, are typically used. Such 
approaches have significant shortcomings as they provide 
only a first-moment approximation of the mean response 
and can frequently miss the true failure mechanism 
(Sayed et al. 2010). To address this, conservative values 
are selected to ensure the structure can withstand a range 
of potential loading conditions. Such methods provide an 
inconsistent measure of risk and in many cases can result 
in unnecessary cost and schedule overruns. 

Reliability methods, in conjunction with more traditional 
design methods, provide better insight into design 
performance by quantifying uncertainty in both the loads 
and resistances acting on a system. In doing so, the 
probability of failure pf can be assessed with respect to a 
prescribed failure criterion or mode, leading to a greater 
understanding of risk and a more economic design. 
Despite the inherent benefits of these methods, they have 
yet to achieve widespread use in geological engineering. 
This is largely due to the use of unfamiliar statistical terms 
and the misconception that such analyses require 
considerably more effort than conventional design 
methods. Contrary to this belief, reliability analyses can be 
easily applied to geotechnical problems and provide 

invaluable information to the engineer regarding system 
performance. While reliability methods are still in their 
infancy, examples of their use in civil and geological 
engineering projects exist in the literature for retaining wall 
design (Basma et al. 2003, Sayed et al. 2010), slope 
stability assessments (El-Ramly et al. 2002, Xu and Low 
2006, Kavvadas et al. 2009, Duncan 2000), tunnel design 
(Schweiger et al. 2003, Brinkman 2009, Mollon et al. 
2009, Papaioannou et al. 2009) and underground pillar 
analyses (Griffiths et al. 2002). Baecher & Christian 
(2003) also provides an excellent overview of reliability 
methods and potential applications. 

To perform a reliability analysis for a particular system, 
a performance function must be used to define the critical 
limit state between stable and failure conditions. For 
simple systems, the performance function can be defined 
explicitly and system performance (expressed as the 
reliability index β) can be determined easily. In complex 
systems, such as in underground applications where the 
rock is acting as both a load and a resistance, closed form 
solutions rarely exist. In these cases, the engineer must 
employ techniques that approximate the behaviour of the 
performance function to provide a reasonable estimate of 
system reliability. Monte Carlo simulations can also be 
used for direct calculation of the probability of failure 
where sufficient computer power is available. 

This paper provides a brief description of the sources 
of uncertainty in geotechnical engineering and outlines a 
standard approach to reliability design. The major 
reliability-based methods that can be used in geological 
design are then presented and discussed. These methods 
are then applied to assess the performance of an 
underground pillar in limestone. 



2 UNCERTAINTY IN GEOLOGICAL ENGINEERING 
 
Given the complex history of formation and the difficulties 
associated with testing geomaterials, uncertainty plays a 
significant role in geotechnical engineering. In general, 
sources of uncertainty include the natural heterogeneity or 
in situ variability of the material, the limited availability of 
information about subsurface conditions and errors made 
during the measurement and testing phase (Schweiger et 
al. 2001). This uncertainty in the absolute value creates a 
distribution of possible values for each input parameter. 
To determine the likelihood of a certain value occurring, a 
probability density function (PDF) is defined for each 
parameter using a series of statistical moments, the most 
common of which are the mean µ (first moment) and 
variance σ2 (second moment). For most geological 
parameters, it is suitable to use a normal or lognormal 
distribution (Baecher and Christian 2003), however other 
distributions may be used where appropriate. 

As uncertainty is present in the in situ parameters, this 
logically means that uncertainty will also exist in the 
expected performance of the design. Unfortunately, the 
overall uncertainty is rarely quantified. Instead, 
deterministic analyses are performed using conservative 
input parameters to ensure the structure is robust enough 
to withstand all potential loads. As the definition of 
“conservative” is variable, there is no guarantee that the 
design will perform as expected. Additionally, using overly 
conservative values often leads to significant cost and 
schedule overruns. In situations where conservatism is 
not appropriate, the observational method is typically 
used. This process begins during the design phase where 
possible methods of unsatisfactory performance are 
considered and plans are developed to address these 
issues. Field measurements are then made during the 
construction and operations phases to establish whether 
these developments are occurring. This observed 
behavior is then used to update the design and 
construction process. While this method is used 
extensively, it has significant limitations as it does not 
consider the relative likelihood of the undesirable 
occurrences and cannot anticipate possible design 
deficiencies. It also requires continuous communication 
between the engineer and decision maker to be effective. 

 
3 RELIABILITY-BASED DESIGN 
 
3.1 Reliability Index and the Probability of Failure 
 
Reliability analyses offer a more rational approach to 
quantify design risk than deterministic analyses by 
incorporating uncertainty in the input parameters in the 
analysis. In doing so, a probability of failure pf can be 
established with respect to a specific failure mode, with 
“failure” defined as either the ultimate collapse of the 
structure or loss of serviceability. This provides a more 
consistent and complete measure of risk as the probability 
of failure is invariant to all mechanically equivalent 
definitions of safety and incorporates additional 
uncertainty information (Sayed et al. 2010).  

To perform a reliability analysis, a performance 
function G(X) must be defined that relates the resistances 

R(X) and the loads Q(X) acting on the system. This 
relationship is written as: 
 

G(X) = R(X) – Q(X)    [1] 
 
where X is the collection of random input variables. 

Based on this definition, stable conditions are anticipated 
when G(X) > 0, while G(X) < 0 implies failure. The surface 
created by G(X) = 0 is referred to as the critical limit state 
as it defines the boundary between these two conditions. 
When considering the critical limit state for a simple 
system such as a block moving on a surface, the 
performance function would be expressed as the shear 
strength that resists sliding minus the shear force that 
initiates sliding. Such equations can be evaluated 
analytically with little additional effort. For more complex 
problems, such as an analysis of tunnel deformation in 
brittle or squeezing conditions, it is difficult to define the 
loads and resistances explicitly. Approximate methods of 
evaluation are therefore required. 

 
 

 
Figure 1. Probability Density Function (PDF) showing the 
reliability index β and probability of failure pf for a 
performance function (Christian 2004). 

 
 
To evaluate the reliability of the system, the distance 

between the mean value of the performance function and 
the critical limit state at G(X) = 0 must be determined. 
When the distance between these two points is 
normalized with respect to the standard deviation 
(uncertainty) of the performance function, this is referred 
to as the reliability index β for the system (Figure 1). This 
is defined as: 

 

     [2] 
 
where µG and σG are the mean value and standard 

deviation of the performance function, respectively. The 
disadvantage to Equation 2 is that to solve for the value of 
β, the exact shape of the performance function must be 
known, which is not always the case. A more versatile 
measurement of reliability is the Hasofer-Lind reliability 
index βHL. This method, also referred to as the First Order 
Reliability Method (FORM), calculates the minimum 
distance in units of directional standard deviation from the 
mean value point of the multivariate distribution of the 
random variables to the boundary of the critical limit state 
(Figure 2). This provides a more consistent and invariant 



measure of reliability for the system and can also be 
easily calculated for correlated or uncorrelated variables 
using the approach outlined in Low and Tang (1997). The 
equation for βHL can be defined as: 

 

  [3] 
 

where X is the vector of random variables, µ is the 
vector of mean values of random variables and F defines 
the failure region of G(X) < 0. The variable C defines the 
correlation matrix, which allows the user to establish 
either a positive or negative relationship between random 
variables. As an example, a positive correlation could be 
used to describe the relationship between the uniaxial 
compressive strength (UCS) and the Young’s Modulus (E) 
of a material. For uncorrelated variables, the matrix C 
simplifies to a symmetric unit matrix. While matrix algebra 
may be unfamiliar to some, programs such as Microsoft 
Excel or MATLAB can be used to easily complete these 
calculations. One such method is summarized in Low and 
Tang (1997). 

 
 

 
Figure 2. Design point, mean value point and reliability 
index in plane for a FORM analysis (Xu and Low 2006). 

 
 
Once the reliability index has been determined, the 

probability of failure pf for the system can be found by 
calculating the probability of G(X) < 0. This is related to 
the reliability index using the following equation: 

 

    [4] 
 
where Φ is the cumulative distribution function (CDF) 

for the performance function evaluated at 0 with a unit 
standard deviation and a mean β. As mentioned earlier, 
the shape of the distribution is rarely known and therefore 
must be assumed. In most cases, a normal distribution is 
reasonable, however a truncated or lognormal distribution 

may be more appropriate when the performance function 
depends on positive functions, such as factor of safety, 
extent of yield in a material or displacements. 

From Equation 2 it is clear that for a constant mean 
value, as the reliability index increases, the uncertainty in 
the estimate of the performance function decreases 
(Figure 3). This results in a more narrow distribution for 
the performance function and a decrease in the probability 
of failure for the system (Table 1). The relationship 
between the reliability index and the probability of failure 
for a system is demonstrated graphically in Figure 4. 

 
 

 
Figure 3. Effect of changing the reliability index on the 
uncertainty of a system with a mean factor of safety of 
2.5, assuming the function is normally distributed. 

 
 

Table 1. Effect of changing the reliability index on the 
probability of failure for a system. Reliability indices 
correspond to the PDFs in Figure 3. 
 
Design Reliability Index (β) Probability of Failure (pf) 

Option 1 1.0 15.9% 

Option 2 1.5 6.7% 

Option 3 2.0 2.3% 

Option 4 2.5 0.6% 

 
 

 
Figure 4. Relationship between the reliability index and 
the probability of failure for a system, assuming the 
performance function is normally distributed. 



3.2 Reliability-Based Design Approach 
 
Based on the general description of reliability theory in the 
previous section, a set of steps can be defined for a 
general reliability analysis. These are: 

 
1. Develop a performance function by defining the 

failure conditions for the system. When 
considering the ultimate limit state of a structure, 
this will typically involve a minimum factor of 
safety. For serviceability analyses, the definition 
may involve critical displacements, failure of 
support elements or maximum convergence. 

2. Determine the statistical moments of relevant 
input parameters including the mean and 
variance. Select an appropriate PDF based on the 
data set. 

3. Calculate the statistical moments of the 
performance function. In simple cases these 
values can be determined analytically, while 
approximations are needed in more complex 
cases. For geological engineering problems, finite 
element models are typically required. 

4. Calculate the reliability index β directly (Equation 
2) or by using a FORM analysis (Equation 3). 

5. Calculate the probability of failure pf. If a 
sufficiently large number of evaluations have been 
performed, this can be calculated directly. For 
other cases, an assumption must be made about 
the shape of the performance function.  

 
As many of the reliability methods are based on 

approximations, it is expected that different methods will 
produce different results. It is important that results from 
different methods are compared to obtain a more accurate 
understanding of system performance. 

 
4 DIRECT RELIABILITY METHODS 
 
For complex problems, the performance function cannot 
be stated explicitly. In such cases, reliability methods are 
typically coupled with the finite element method (FEM) to 
evaluate the performance function at a series of discrete 
points and approximate the overall behaviour. The 
number of evaluations required and what input 
parameters are selected depends on the reliability method 
used. The following section describes four methods that 
can be used to approximate the statistical moments of the 
performance function. 

 
4.1 First Order Second Moment Method 
 
In cases where the performance function is smooth and 
regular, the mean and variance can be calculated using 
the first terms of a Taylor series expansion according to 
the First Order, Second Moment (FOSM) method. This 
method assumes that the expected value of the 
performance function is approximately equal to the value 
of the function calculated with the mean values of all 
variables. The variance is then determined by calculating 
the partial derivatives of the performance function with 
respect to each of the uncertain variables. For N 

uncorrelated random variables, the variance of the 
performance function is defined as: 

 

    [5] 
 
where Xi refers to the N random variables. As the 

performance function cannot be explicitly stated in most 
geotechnical applications, a linear approximation of the 
partial derivative is required. This is accomplished by 
changing each variable by a small amount (∆Xi) while all 
other variables are kept at their mean value. The change 
in the performance function (∆G) that results is then 
divided by the difference in the input. To maintain a 
consistent level of uncertainty, the input variables are 
typically chosen at the mean plus and minus one standard 
deviation. Equation 5 can then be rewritten as: 

 

    [6] 
 
For this case, 2N+1 approximations are required. With 

the moments of the performance function known, the 
reliability index and probability of failure can be calculated 
using Equations 2 and 4, assuming a normal distribution. 
A straightforward application of this method to a slope 
stability calculation can be found in Duncan (2000). 

The FOSM approach is considered a fairly simple 
method of analysis when compared to other direct 
reliability methods as only the statistical moments of the 
input variables are required, rather than complete 
knowledge of the distribution. The shortcoming of this 
method is that the accuracy of the results depends upon 
the particular values of the variables at which the partial 
derivatives are approximated or calculated (Christian 
2004). The assumption of a linear approximation also 
creates difficulties when the behaviour of the performance 
function changes significantly over ∆X. One such example 
of this would be where the lower value results in failure, 
and the upper value results in a stable condition. In this 
case, an estimate of 50% failure would be produced due 
to the assumed linear behaviour between the results. 

 
4.2 Point Estimate Method 
 
Originally proposed in Rosenblueth (1978, 1981), the 
Point Estimate Method (PEM) is a numerical procedure 
that approximates the moments of a function by 
evaluating it at a series of specifically chosen, discrete 
points. Evaluation points are chosen at the mean plus and 
minus one standard deviation for each variable, resulting 
in 2N evaluations for N random variables (Figure 5). A 
weighting value ρ is used at each evaluation point to 
ensure the moments of the input variables are recovered. 
If all evaluation points are weighted equally, this value is 
simply 1/N for each variable. The statistical moments of 
the performance function for the PEM are defined as: 

 

    [7] 
 

  [8] 



While the Rosenblueth PEM is considered a robust 
method when the coefficients of variation for input 
variables are small, the number of evaluations can be 
significant when a large number of random variables are 
considered. Methods have been developed by several 
authors to reduce the number of evaluations required, 
however the user must be mindful of the assumptions 
made. These methods are summarized further in Tsai and 
Franceschini (2005). 

 
 

 
Figure 5. Evaluation points for a system of three variables 
using the Rosenblueth point estimate method (Christian 
and Baecher 1999). 

 
 

4.3 Response Surface Method and First Order Reliability 
Method 

 
The Response Surface Method (RSM) is commonly used 
in civil engineering design to approximate the mechanical 
response of a structure. In reliability methods, the RSM 
can be used to approximate the performance function by 
relating the input and output parameters for a system by a 
simple mathematical expression. For civil geotechnical 
systems, it has been shown that quadratic polynomials 
are suitable for localized approximation (Sayed et al. 
2010). The exact limit state function G(X) can therefore be 
approximated by a polynomial function G’(X): 

 

  [9] 
 
where Xi refers to the N random variables and l, mi and 

ni are coefficients that must be determined. To properly 
evaluate the number of unknowns in the quadratic 
equation, 2N +1 evaluations are required (Bucher and 
Bourgund 1990). Once the approximate limit state 
function has been established, the FORM (Equation 3) is 
used to determine the reliability index directly. This is 
more accurate than the FOSM method as it uses 
geometric interpretations to determine the reliability index 
rather than determining statistical moments through a 
linear extrapolation of mean input values. The advantage 
to the combined RSM/FORM method is that it can be 
used for correlated and non-normal input variables and is 
suitable for any linear limit state surface. One 
disadvantage is the assumption that the inputs and 

outputs are related through a quadratic equation, which 
may not be valid in all situations. 

 
4.4 Monte Carlo Simulation 
 
In cases where the behaviour of the performance function 
is difficult to evaluate, the probability of failure for a certain 
limit state can be evaluated directly using Monte Carlo 
simulations. In this method, large sets of randomly 
selected input values are generated according to their 
PDF. Each set of parameters is then used in the analytical 
model to determine the behaviour of the system. The 
frequency of each outcome can then be plotted to directly 
calculate the probability of failure. Several examples of 
the application of this method can be found in the 
literature including Griffiths et al (2002), which combines it 
with the random finite element method (RFEM). 

The lack of approximations makes the Monte Carlo 
method an ideal benchmark to compare the other 
reliability methods to. While the method is straightforward 
to apply, it can be computationally intensive and time 
consuming. Additionally, as each set is randomly 
generated, the relative contributions of each variable to 
the overall uncertainty cannot be calculated. 

 
5 CASE STUDY: PILLAR ANALYSIS IN SPALLING 

GROUND 
 
To demonstrate the applicability of reliability methods, a 
case study is examined for an underground pillar analysis 
based on conditions similar to those observed at the 
Norton Barberton mine in Ohio. Pillar stability analyses 
are relevant to several engineering applications, such as 
pump storage design, expansion of existing mine works 
and nuclear waste storage in an underground repository. 

 
5.1 Finite Element Analysis 
 
A 13 m wide, unreinforced limestone pillar at a depth of 
700 m has been considered. The pillar separates room 
excavations measuring 8.5 m wide and 7 m high. Stress 
conditions at depth are considered isotropic with a ratio of 
horizontal stress to vertical stress (K) equal to 1.5. Given 
the high quality and strength of the limestone and the 
stress conditions at depth, spalling and brittle failure were 
considered the most likely failure mechanisms. 

Expected values and standard deviations were 
determined for each parameter by analyzing geotechnical 
test results. All variables were determined to exhibit 
approximate normal behaviour and are assumed to be 
uncorrelated. The statistical moments for each variable 
are shown in Table 2. To reduce the number of random 
variables considered, a parametric study was completed 
to determine which parameters had a substantial effect on 
pillar failure. From this, it was concluded that only the 
UCS and crack initiation ratio have engineering 
significance and need to be treated as random variables. 
All other parameters were treated deterministically and 
their expected (mean) values were used. 

Hoek-Brown peak and residual strength parameters 
were calculated according to the spalling criterion 
proposed in Diederichs (2007) and are shown in Table 3. 



As these strength parameters are functions of the in situ 
parameters, variances were determined using error 
propagation techniques. Using this method resulted in 
coefficients of variation in excess of 40% for the 
parameters, indicating a significant increase in 
uncertainty. In the case of the residual m parameter, a 
coefficient of variation of 60% was calculated, which was 
considered unreasonably high given a range of 7 to 10 is 
expected (Diederichs 2007). As such, a standard 
deviation of 0.5 was used as this ensures 99% of values 
will fall within the expected range. This approach, referred 
to as the 3-sigma rule, is considered to be an acceptable 
alternative method to error propagation techniques for 
determining uncertainty in spalling parameters where 
unreasonable coefficients of variation are determined. 

 
 

Table 2. Mean µ, standard deviation σ and coefficient of 
variation COV for random variables. 
 
Random Variable µ σ COV 

Density (Mg/m3) 2.69 0.02 1% 

UCS (MPa) 111 24 21% 

Crack Initiation Ratio 41.6% 4.3% 10% 

Tensile Strength (MPa) 4.3 1.2 27% 

Intact Young’s Modulus (GPa) 37.3 8.8 24% 

Poisson’s Ratio 0.31 0.09 28% 

 
 

Table 3. Mean µ, standard deviation σ and coefficient of 
variation COV for Hoek-Brown spalling parameters. 
 
Random Variable µ σ COV 

Peak (spalling) m 0.773 0.415 54% 

Peak (spalling) s 0.030 0.012 41% 

Peak (spalling) a 0.250 - - 

Residual m 8.643 0.50 6% 

Residual s 0.000 - - 

Residual a 0.750 - - 

 
 
Pillar yield was estimated using the finite element 

analysis program ‘Phase2’ developed by Rocscience 
Incorporated (www.rocscience.com). Given the symmetry 
of the room and pillar design, the model was centred 
about the pillar with the edges through the centre of the 
adjacent rooms to reduce computational requirements 
(Figure 6). The analysis was carried out in three stages. In 
the first stage, the self-weight of the rockmass is applied. 
Boundary conditions are used to restrain the walls of the 
model in the lateral direction and the bottom of the model 
in the vertical direction. An equivalent field stress is 
applied to the top of the model to simulate loading from 
the column of rock above. In the second stage, the room 
to the left of the pillar is fully excavated, while the room to 
the right of the pillar is fully excavated in the third stage. 
The finite element mesh used for the analysis consists of 
4006 nodes and 7778 3-noded triangular elements. A 
maximum of 500 iterations is used for each load step. 

 
Figure 6. Phase2 model geometry for pillar analysis. 

 
 

5.2 Results and Discussion 
 
For this analysis, the performance function is defined by 
the amount of pillar damage (yield) sustained. The 
performance function is therefore defined as: 
 

G(X) = Dmax – D(X)    [10] 
 
where Dmax is the serviceability limit that defines the 

maximum amount of pillar damage permitted and D(X) is 
an expression of the pillar damage as a function of the 
input variables (measured along the mid-height of the 
pillar). Each of the four reliability methods described in 
Section 4 was used to evaluate the probability of failure 
for the pillar. Examples of pillar damage in the models are 
shown in Figures 7 and 8. 

 
 

 
Figure 7. Phase2 yielded element output showing 16% 
pillar damage (yield zone shown in black).  

 
 
Results for the reliability analyses are shown in Table 

4 for a Dmax value of 40%. While no failure is predicted for 
the expected (mean) case, the probability of pillar damage 
exceeding the serviceability limit state is predicted to be 
between 5 and 13%, with an expected value of 9%. The 
variability in the estimates of probability of failure 
demonstrates the importance of using more than one 
reliability method in these analyses. At least two methods 
should always be considered to ensure the probability is 
not seriously under or overestimated. 



 
Figure 8. Phase2 yielded element output showing 36% 
pillar damage (yield zone shown in black). 

 
 

Table 4. Reliability analysis results for underground pillar 
analysis (for Dmax value of 40%). 
 
Method (Distribution) Number 

of Models 
Reliability 
Index (β) 

Probability of 
Failure (pf) 

FOSM (Normal) 9 1.62 5.3% 

PEM (Normal) 17 1.22 11.1% 

PEM (Lognormal) 17 1.29 9.8% 

RSM (Normal) 9 1.13 12.9% 

Monte Carlo Simulation 100 - 6.0% 

 
 
Selecting an appropriate distribution to represent the 

performance function and calculate the probability of 
failure from the reliability index was a consistent issue for 
the FOSM, PEM and RSM analyses. As can be seen in 
the Monte Carlo simulation results, 40% of the evaluations 
show no pillar damage while the remaining 60% show 
between 0 and 50% pillar damage (Figure 9). While an 
exponential function has a similar shape as these results, 
pillar damage due to spalling does not logically follow 
such behaviour. Exponential functions model processes in 
which events occur continuously and independently at a 
constant average rate, while spalling failure is better 
described as an instantaneous event that occurs when a 
critical stress condition is exceeded. Given this reasoning 
and in the interests of reducing complexity, normal and 
lognormal distributions were used to express the 
performance function for each analysis. 

The probability of failure was determined for each 
method for a Dmax value of 0 to 100% in 10% increments. 
The results indicate that the reliability methods tend to 
approximate the behaviour of high (>40%) damage events 
well, but either underestimate or overestimate the 
probability of low (0-40%) damage events (Figure 10). 
The RSM proved to be the least accurate of the methods 
while the PEM estimates the probability of failure of high 
damage events the most accurately. At lower critical 
damage values, Monte Carlo simulations would be 
required to accurately determine the probability of failure. 
It is worth noting that by averaging the PEM and FOSM 
results, the resultant curve has the least amount of error 
when compared to the Monte Carlo simulation results. 

A significant limitation to the reliability methods as 
proposed involves the limited range of input parameters 
that are sampled during analysis. In risk analyses, 
relatively rare events, which occur at the tails of the 
distribution, can have extreme consequences and need to 
be considered. While these points are sampled in a Monte 
Carlo simulation, they are not considered by the FOSM, 
PEM or RSM methods. When using approximate 
methods, further analyses should be performed to 
evaluate system behaviour at two and three standard 
deviations from the mean. These points could then be 
used to refine the proposed distribution of the 
performance function. While this will add to the number of 
evaluations being performed, it will still be less 
computationally intensive than a Monte Carlo simulation, 
which would ideally involve thousands of runs.  

 
 

  
Figure 9. Pillar damage comparison between results 
obtained using a Monte Carlo simulation and the expected 
normal distributions developed using the FOSM and 
Rosenblueth PEM. 

 
 

 
Figure 10. Probability of exceeding a variety of maximum 
pillar damage values (Dmax) for each reliability method. 

 
 

6 CONCLUSIONS 
 
Uncertainty is inherent in geological engineering problems 
and can have a significant impact on design performance 
if not properly accounted for. Currently, the reliability-
based design approach is the only methodology that 
quantifies uncertainty and provides a consistent measure 



of safety by determining the probability of failure for a 
system. While these methods may appear complicated, 
they require little additional effort when compared to 
conventional design methods and can be logically applied 
to a variety of engineering problems. In the case of 
complex situations where the rock acts as both a load and 
a resistance, finite element methods should be used in 
conjunction with reliability methods to approximate the 
behaviour of the system. As the results will differ 
depending on the method selected, two or more reliability 
approaches should be used to gain an appreciation of the 
errors involved. For approximate methods, additional 
sampling should occur at the tails of the distribution to 
ensure that low probability and high consequence events 
are assessed. While this will result in additional 
evaluations of the performance function, thus degrading 
the advantage of approximate methods over Monte Carlo 
simulations, the number of required evaluations will still be 
far less. 

To demonstrate the value of reliability analyses, a 
case study was performed for a pillar design in limestone 
at depth. While the mean case showed no pillar damage, 
a 9 ± 3% probability of failure was calculated for a 
serviceability limit state of 40% damage using reliability 
methods. Had only the mean case been considered, as 
would have been the case with a deterministic analysis, 
no pillar damage would have been anticipated and the 
design risk would have been significantly underestimated. 
Issues in selecting an appropriate distribution shape to 
calculate the probability of failure were present, however 
averaging the results from multiple methods provided an 
appropriate measure of reliability for the system for high 
damage levels. 
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