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ABSTRACT 
Resistance factors are developed for drilled shafts (bored piles) in sand and clay for design methods based on soil 
variables. A rigorous analysis was performed in which the uncertainties of the design variables and equations were 
systematically quantified. Monte-Carlo simulations were then performed to obtain the distributions of the shaft and 
base capacities and applied dead and live loads. The limit state and nominal resistances and loads were identified, and 
the optimal dead and live load factors calculated. The optimal resistance factors were then adjusted for use with load 
factors recommended by FHWA. Use of these factors in the design of drilled shafts using LRFD is then discussed. 
 
RÉSUMÉ 
Les facteurs de résistance sont développés pour des puits forés dans le sable et d'argile pour les méthodes de 
conception basées sur les variables du sol. Une analyse rigoureuse a été effectuée dans laquelle les incertitudes des 
variables de conception et les équations ont été systématiquement quantifiés. Simulations Monte-Carlo ont été 
effectuées pour obtenir les distributions de l'arbre et des capacités de base et les charges appliquées morts et vivants. 
Les résistances état limite et nominales et les charges ont été identifiés, et les facteurs de charge optimal mortes et 
vivantes ont été obtenus d'eux. Les facteurs de résistance optimale ont ensuite été ajustés pour une utilisation avec 
des facteurs de charge recommandées par la FHWA. Conception des piles en utilisant LRFD est discutée. 
 
 
 
1 INTRODUCTION 
 
Design of pile foundation solutions can best be done by 
clearly defining limit states and then configuring the piles 
in such a way as to prevent the attainment of these limit 
states. There are three approaches to do this; in order of 
complexity, they are: working stress design (WSD), load 
and resistance factor design (LRFD) and reliability-based 
design (RBD). All three account in some way for the fact 
that foundation engineering problems are not 
deterministic, and most if not all variables in the problem 
are random or have a random component. In this study, 
we develop LRFD methodology for ultimate limit states 
related to axial loading of single drilled shafts (bored 
piles); sands and clays are the two soil types we have 
considered. 
 
 
2 LRFD FRAMEWORK 
 
In the LRFD framework, the capacity (total resistance) 
and demand (applied loads) are related by: 
 
 

(n) (n)
(RF) (LF)i iR L≥ ∑   [1] 

 
 
where (RF) = resistance factor, R

(n) is the nominal 
resistance, (LF)i = load factor corresponding to the ith 
nominal (or characteristic) load Li

(n), and the superscript 
(n) represents nominal loads and resistances. The 
deterministic loads and resistances estimated by design 
engineers based on procedures prescribed by codes, 

manuals and books or on experience are referred to as 
nominal loads and resistances, respectively. 
   For pile problems, we have two sources of resistance: 
base resistance and shaft resistance. The base and shaft 
resistances of piles are calculated separately, and the 
mechanisms by which these resistances develop are 
quite different. The loading that develops along the pile 
shaft closely approximates simple shear loading and, at 
an ultimate limit state, corresponds to critical state 
values of shear stress. The loading around the base is 
much more complex, with mean stress increasing at 
almost every point around the base and shear stresses 
developing to different degrees and at different rates 
depending on the point considered. Consequently, the 
two capacity equations are subjected to different sets of 
uncertainties. 
   We define an ultimate limit state of a pile as any 
combination of loads and resistances such that the sum 
of the loads (i.e., live, dead, etc.) equals the ultimate 
capacity Qult of the pile, which is itself the sum of the 
ultimate base resistance Qb,ult and limit shaft resistance 
QsL (Salgado 2008). A “safe” or acceptable design state, 
therefore, satisfies inequality. In this paper, inequality [1] 
is used as the LRFD design relationship, which, for 
applied dead and live loads, can be rewritten as: 
 
 

(n) (n) (n) (n)

,ult DL LL(RF) (RF) (LF) (DL) (LF) (LL)
b b s sL

Q Q+ ≥ +  [2] 

 
 
where Q

(n)
b,ult and Q

(n)
sL are the nominal values of Qb,ult 

and QsL, (DL)(n) = nominal dead load, (LL)(n) = nominal 



live load, (RF)b = base resistance factor, (RF)s = shaft 
resistance factor, (LF)DL = dead load factor and (LF)LL = 
live load factor. 
 
3 UNIT BASE AND SHAFT RESISTANCE  
 
3.1 Drilled Shaft (Bored Pile) in Sand 
 
The unit shaft resistance qsL in sand is often determined 
using the β method, according to which: 
 
 

L ( tan ) ' 's v vq K δ σ βσ= =   [3] 

 
 
where σv′ is the in situ vertical effective stress, K is a 
coefficient and δ is the friction angle mobilized along the 
pile-soil interface. Recently, Loukidis and Salgado (2008) 
performed finite element analysis coupled with an 
advanced constitutive model to investigate the 
mechanics of load transfer at the interface of non-
displacement piles in sands. Based on their analysis, 
Loukidis and Salgado (2008) proposed the following 
equation for K: 
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where DR is the relative density of sand and pA is a 
reference stress (100 kPa). Loukidis and Salgado (2008) 
suggested a value of C1 = 0.7 for clean sands in general. 
Loukidis and Salgado (2008) also found that the angle δ 
is approximately equal to the triaxial-compression 
critical-state friction angle ϕc; thus, δ = ϕc can be 
assumed in calculations without any significant error. 
   The ultimate unit base resistance qb,ult is related to the 
limit bearing capacity. Lee and Salgado (1999) 
performed nonlinear finite element analysis and used 
plate load tests in calibration chambers to find that 
qb,ult/qbL depends primarily on DR. Based on this analysis, 
Salgado (2008) proposed an analytical expression for 
qb,ult corresponding to 10% relative settlement: 
 
 

0.0066
,ult ,10% L0.23 RD
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where the limit unit base capacity qbL can be expressed, 
based on rigorous cavity expansion analysis (Salgado 
and Randolph 2001, Salgado and Prezzi 2007) as: 
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where σh′ = K0σv′ is the in situ effective horizontal stress 
and K0 is the coefficient of earth pressure at rest.  
 
 
3.2 Drilled Shaft in Clay 
 
To calculate the unit shaft resistance qsL in clay, we used 
the α method, according to which: 

sL uq sα=   [7] 

 
 
Based on finite element analyses coupled with an 
advanced constitutive model, Chakraborty et al. (2011) 
proposed the following equation for α: 
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where '

vσ  is the in situ vertical effective stress; ϕc is the 

critical-state friction angle; ϕr,min is the minimum residual 
state friction angle; pA is a reference stress (100kPa); A1 
is a coefficient equal to 0.4 for ϕc - ϕr,min ≥ 12 ˚, 0.75 for 
ϕc - ϕr,min ≤ 5˚; and A2 is a coefficient determined by A2 = 
0.4 + 0.3 ln (su / '

vσ ). 
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Figure 1 Limit unit base resistance of circular 

foundation versus depth (Salgado et al. 2004) 
 
 
   Salgado et al. (2004) used finite element limit analysis 
to investigate the upper and lower bound of the ratio of 
net bearing capacity qbL

net, defined as 
 
 

net
0bL bLq q q= −   [9] 

 
 
where q0 is the surcharge at the pile base level. Based on 
their analysis, Salgado et al. (2004) found that the lower 
and upper bound values of Nc, (= qbL

net / su) increases 
with increasing relative depth D/B (the ratio of the length 
of the pile to the width of the pile), as Figure 1 shows. By 



substituting Nc into equation [9], the equation of the limit 
unit base resistance is: 
 
 

u 0bL cq N s q= +   [10] 

 
 
4 UNCERTAINTIES OF VARIABLES AND MODEL 
 
4.1 Uncertainties in Soil Variables and Models 
 
4.1.1 Drilled shafts in sand 
 
The soil variables required for pile capacity calculations 
in this analysis are ϕc, DR, K0 and soil unit weight γ. K0 is 
difficult to estimate in the field, and not much information 
is available regarding its variability. Accordingly, we 
assumed K0 deterministic (but performed calculations for 
values in the 0.4-0.5 range). 
   Kim (2008) estimated the COV of ϕc to be in the 
0.0081-0.0172 range based on the experimental studies 
by Verdugo and Ishihara (1996) and Negussey et al. 
(1987). In this study, we conservatively assume the COV 
of ϕc to be equal to 0.02. We also assume that ϕc follows 
a normal distribution. 
   Baecher and Christian (2003) reported, based on 
studies by Lee et al. (1983), Lacasse and Nadim (1996) 
and Lumb (1974), that the COV of unit weight does not 
exceed 0.1. In this research, we assumed that γ follows a 
normal distribution with a COV = 0.1. 
   A reliable and practical method of calculating DR is 
from CPT results, as proposed by Salgado (2008), which 
is a result of rigorous cavity expansion analysis (Salgado 
and Prezzi 2007): 
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  [11] 
 
 
   In this research, we assume cone resistance qc for a 
soil profile as the starting point instead of DR and 
calculate the PDF of DR from the PDF of qc equation [11]. 
In this research, we assumed that qc follows a normal 
distribution with COV = 0.08 (following Foye 2005). 
   The model uncertainty in the qc→DR relationship was 
investigated by Foye (2005) using results of twenty-five 
well-controlled calibration chamber tests (Salgado 1993). 
Based on the study by Foye (2005), we found that DR is 
over-predicted by 3% using equation [11]. Foye (2005) 
calculated the standard deviation of DR to be equal to 
10%, with qc as a deterministic variable. Foye (2005) 
also observed that the normalized error of DR follows a 
normal distribution. The incorporation of the qc→DR 
model error in the M-C simulations was done by 

introducing a bias factor bias 0.97DRM =  and a new random 

variable MDR that follows a normal distribution with 
standard deviation SMDR = 0.1/0.97E(fDR) and a mean 
E(MDR) = 1.0. 
 
 

bias(%) ( , , ) 0.97 ( , , )R DR DR DR c c DR DR c cD M M f q M f qφ σ φ σ′ ′= =  

  [12] 
 
 
   The model uncertainty associated with qsL arises in the 
estimation of β = Ktanδ in equation [3]. To estimate the 
uncertainty in equation [4], results of eight centrifuge 
tests by Fioravante (2002) and Colombi (2005) were 
used. The standard deviation of the normalized error 
between data from centrifuge test and the values from 
equation [4] was about 0.2 with no bias. Therefore, in 
order to incorporate the qsL-model uncertainty in our 
analysis, we introduce a new random variable Mβ that 
follows a normal distribution with expectation E(Mβ) = 1.0 
and standard deviation SMβ = 0.2. The equation used to 
calculate qsL in the Monte-Carlo simulations is: 
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   The model uncertainty associated with unit base 
resistance (equations [5] and [6]) was estimated from 
twenty-one well-controlled “deep” plate load tests 
performed within a calibration chamber (Lee and Salgado 
1999). The plate load tests in the calibration chamber 
were done for two relative densities: DR = 50% and DR = 
90%. We found that the model over-predicts qb,10% by 3% 
for DR = 50% and under predicts qb,10% by 16% for DR = 
90%. In order to incorporate the model uncertainty of 
qb,10% in calculations, we introduced a bias factor which 
equals to 0.97 for DR ≤ 50%, equals to 1.16 for DR ≥ 90% 
and equals to a linearly interpolated value between 0.97 
and 1.16 for 50% < DR < 90%. We also introduced a new 
random variable Mqb, following a normal distribution with 
mean E(Mqb) = 1 and standard deviation SMqb equal to 
0.1. 
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  [14] 
 
 
4.1.2 Drilled shafts in clay 
 
For drilled shafts in clay, the soil variables required ϕc, ϕr, 

min, su and soil unit weight γ. We assumed that soil unit 
weight γ follows a normal distribution with a COV = 0.1 
for clay as well as for sand. 
   Based on experimental observations of Bolton (1986), 
the expectation of the maximum error in the estimation of 
ϕc at a particular site is ±1°. Assuming that ϕc follows a 



normal distribution, the spread of 2° results in a standard 
deviation of 0.33° (=Range/6.0=2.0/6.0) for ϕc based on 
the 6σ method (Foye 2005). Because ϕc of different clays 
typically lie within the 15°-30° range (Salgado 2008), the 
maximum and minimum values of COV of ϕc are 
0.33°/15° = 0.022 and 0.33°/30° = 0.011 at a particular 
site. In this study, we conservatively assume the COV of 
ϕc to be equal to 0.03. 
   We also assume that the maximum error in the 
estimation of ϕr,min is ±1°. For a clay such as London 
Clay, however, ϕr,min is within the 7.5°-9.4° range (Bishop 
et al. 1971).So, we assume that the minimum value of 
ϕr,min is 7.5°. Assuming that ϕr,min follows a normal 
distribution with a standard deviation of 0.33°, the 
maximum COV of ϕr,min is 0.33°/7.5° = 0.044. We 
conservatively assume the COV of ϕr,min to be equal to 
0.05. 
   Equations [7], [8] and [10] show that the limit unit base 
and shaft resistances are functions of undrained shear 
strength su. The equation for su in terms of cone 
resistance is: 
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where qc is cone resistance, σv is vertical stress and Nk is 
the cone factor. In this research, we assume cone 
resistance qc for a soil profile as the starting point in 
design. According to Foye (2006), the COV of qc in clay 
is 0.06 and qc follows a normal distribution. In this study, 
we worked with COV = 0.06. 
   Equation [15] already implies the level of uncertainty in 
the qc → su relationship since the cone factor Nk is 
expressed as a range. The upper and lower bound values 
of Nk are 13.7 and 11.0, respectively, with a range for Nk 
of 2.7 (Salgado et al. 2004). We can estimate the 
standard deviation for a variable that has a range and 
follows a normal distribution using the 6σ method. 
(Withiam et al. 1997, Foye et al. 2006). In this study, we 
assumed that the mean value of Nk is 12.3 and assumed 
that Nk follows a normal distribution with standard 
deviation of 0.45, which is equal to the range divided by 
6.0. 
   The relationship su → qbL for a pile is similar physically 
to the su → qc relationship. If the dimensions of the pile 
are given, we can obtain the lower and upper bound 
values of Nc from Figure 1. Typically, the relative depth of 
a pile is much greater than 5.0, so the maximum and 
minimum values of Nc are taken as 13.7 and 11.0. From 
this range, it is reasonable to set the mean and the 
standard deviation of Nc as 12.3 and 0.45, respectively. 
   The model uncertainty associated with qsL arises in the 
estimation of α using equation [8]. To estimate this, we 
used the elemental simulations of undrained triaxial 
compression tests and direct simple shear tests using the 
two-surface plasticity model for clay proposed by Basu et 
al. (2009). From K0-consolidated undrained triaxial 
compression test (CK0UTXC) simulations with random 

values of ϕc and ϕr,min, we obtained the distribution of 
undrained shear strength of the model, su,model. Since the 
limit shaft resistance of drilled shafts is arrived at through 
a simple shear loading path (Basu et. al 2009), the limit 
shaft resistance qsL would be equal to the simple shear 
strength τss of the soil. Thus, we estimated the 
distribution of qsL using the residual shear strength at 
very large strains resulting from CK0UDSS with random 
values of ϕc and ϕr,min. From the distributions of su,model 
and qsL, we estimated the distribution of αmodel (= qsL / 
su,model). 
   The upper bound of absolute relative error (1- |αmodel / 
αequation|) is 0.2. Consequently, we can assume that the 
range of the ratio αequation/αmodel is approximately 0.4. The 
6σ method leads to an estimate of the standard deviation 
of αequation/αmodel as 0.067 (=0.4 / 6.0). Therefore, to 
incorporate the model uncertainty of shaft resistance in 
our analysis, we introduced a new variable Mα that 
follows a normal distribution with expectation E(Mα) = 1.0 
and standard deviation SMα = 0.1, which is conservative. 
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4.2 Uncertainties in applied loads  
 
According to Ellingwood and Tekie (1999), the dead load 
distribution is approximately normal with a bias factor of 
1.05 and COV equal to 0.1, and that is the assumption 
we made.  Live load is generally described using a 
lognormal distribution (Foye et al. 2006). According to 
FHWA (2001), live load has a bias factor of 1.1-1.2 and a 
COV of 0.18. In this study, we used the lognormal 
distribution to describe live loads. We conservatively 
chose a COV = 0.25 and the corresponding bias factor = 
1.0, as recommended by Ellingwood and Tekie (1999). 
 
4.3 Uncertainties in pile dimensions 
 
Drilled shafts are constructed by removing soil from the 
ground by drilling and filling the resulting cylindrical void 
with concrete and reinforcement. The construction 
process is controlled. Based on typical construction 
tolerances, we assume that the drilled shaft diameter Bp 
follows a normal distribution with a COV = 0.02. 
Additionally, we assume that the pile length Lp is 
deterministic. 
 
5 MONTE-CARLO SIMULATION 
 
Monte-Carlo (M-C) simulations were performed to obtain 
the probability distributions of the resistance (Qb,ult + 
QsL), the load (DL + LL) and their difference. We start 
with a soil profile with an assumed mean trend of CPT 
profile qc(z), where z is the depth and with assumed 
values of pertinent soil variables (ϕc, K0 and γ for sand 
and ϕc ,ϕr, min and γ for clay). We also assume a mean 



value of applied dead load (DL)(mean) and a (LL)/(DL) 
ratio. Then we consider a drilled shaft with an assumed 
length and an assumed mean diameter. We start by 
taking a random value of Bp and proceeding with shaft 
capacity calculations from depth z = 0 to z = L. First, a 
random value of qc is generated for a particular depth 
along with random values of the aforementioned soil 
variables. Then we calculate the soil variables that follow 
from qc (DR for sand, su for clay). Subsequently, we 
determine the uncertainties in the shaft resistance model 
and calculate a random value of unit shaft resistance for 
that depth. The calculated shaft capacities at the different 
depths are added over the entire pile length to obtain the 
random value of the total shaft resistance QsL. Then, as 
we reach the pile base, a random value of the base 
resistance Qb,ult is calculated using the random values of 
soil variables and Bp and the variables representing 
model uncertainties for base resistance. 
   After calculating the random Qb,ult and QsL, random 
values of DL and LL are generated and the difference 
(Qb,ult + QsL) – (DL + LL) between the random values of 
resistance R = Qb,ult + QsL and load Q = (DL + LL) is 
calculated. The above set of calculations completes one 
run of the M-C simulations.  It is repeated ntotal times (the 
value of ntotal depends on the target probability of failure). 
The number of runs nf for which (Qb,ult + QsL) – (DL + LL) 
is less than zero is recorded. The ratio nf / ntotal 
approximates the probability of failure pf. If the calculated 
pf does not fall in the range pf,target ±10%, DL and LL are 
adjusted until it does. After that, we locate the ultimate 
limit state values of the base and shaft capacities and 
dead and live loads as those corresponding to the Monte-
Carlo run for which |C − D| is the minimum. The nominal 
values of resistances and loads are calculated separately 
by using the nominal values of all variables. Optimum 
factors of base and shaft resistances and dead and live 
loads are calculated by dividing the ultimate limit state 
values by the corresponding nominal values.  
   Because of the non-uniqueness of the ultimate limit 
state, the calculations of optimum factors are repeated 
200 times and their average values are proposed as the 
final values of the optimal resistance and load factors.  
This has been shown to provide an excellent estimate of 
the most probable ultimate limit state.  
 
6 ANALYSIS RESULTS 
 
6.1 Drilled shafts in sand 
 
   The soil profiles considered in this paper are those of 
Basu and Salgado (2011): (1) a homogeneous, 
completely dry deposit of sandy soil with a mean relative 
density DR,mean = 70%; (2) the same homogeneous sand 
deposit described in (1) with a water table located at the 
ground surface; (3) a completely dry sand deposit with a 
loose layer (DR,mean = 50%) overlying a strong bearing 
layer (DR,mean = 80%) that extends to great depth; (4) a 
two-layer system, as in (3), with a water table located at 
a depth of 2 m below the ground surface; (5) a two-layer 
system with the top layer consisting of extremely loose 
sand having DR,mean = 20% and the bearing layer 

consisting of dense sand having DR,mean = 80% and with 
a water table located at the ground surface; and (6) a 
four-layer, completely dry deposit consisting of a loose 
top layer with DR,mean = 30% spanning 0−5 m down from 
the ground surface, a second layer with DR,mean = 45% 
spanning 5−10 m below the ground surface, a third layer 
with DR,mean = 60% spanning 10−15 m below the ground 
surface and a bearing layer with DR,mean = 75% that lies 
below the third layer and extends down to great depth.  
The thicknesses of the soil layers in profiles (3)−(6) were 
assumed to be deterministic variables. In deciding the 
thicknesses of the top layers of the two-layer profiles (3), 
(4) and (5), we assumed that the depth of pile 
embedment Hbearing in the bearing layer is two times the 
mean pile diameter Bp,mean  
   For these deposits, we considered three different sand 
types with mean critical-state friction angle ϕc,mean = 30°, 
33° and 36° and, for each type, we assume three 
different values of K0: 0.4, 0.45 and 0.5. The mean 
values of sand unit weight γmean was calculated using the 
mean relative density DR,mean, emax (=0.9) and emin 
(=0.45). The qc,mean(z) curves were initially back-
calculated from pre-assumed values of DR,mean, γmean, 
ϕc,mean and K0 using the inverse of equation [12], and 
then given as input to the Monte-Carlo analysis code. 
   We studied the responses of four drilled shafts with (A) 
mean diameter Bp,mean = 0.3 m and length Lp = 10 m, (B) 
Bp,mean = 1.5 m and Lp = 10 m, (C) Bp,mean = 0.3 m and Lp 
= 30 m and (D) Bp,mean = 1.5 m and Lp = 30 m for the 
profiles (1)−(5). For profile (6), we considered a fifth 
drilled shaft (E) with Bp,mean = 1.0 m and Lp = 20 m. 
   Titi et al. (2004) tabulated the (LL)/(DL) ratios 
recommended by AASHTO and FHWA for design of 
bridge structures; the recommended values vary over a 
wide range of 0.28−1.92. Accordingly, we considered 
(LL)/(DL) = 0.25, 1.0 and 2.0 in our analysis. 
   We found that the optimal load and resistance factors 
are independent of soil variables for all practical 
purposes. This is evident from a comparison of the 
results in Figure 2, in which the optimal resistance and 
load factors of drilled shaft (B) are plotted for soil profiles 
(1) through (5) and for (LL)/(DL) = 1.0 and target pf = 
10−3. This invariance of the factors with soil profiles was 
also observed for the other drilled shafts and for other 
values of (LL)/(DL) and pf. The invariance exists not only 
for soil profiles but also for pile dimensions as is evident 
from Figure 3, which shows the optimal resistance and 
load factors for drilled shafts (A)−(D) installed in soil 
profile (3) and for (LL)/(DL) = 1.0 and pf = 10−4. 
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Figure 2 Optimal resistance and load factors for different 

soil profiles 
 

   The (LL)/(DL) ratio has a non-negligible effect on the 
live load factor. As Figure 4 shows, the increase in the 
optimal live load factor with increase in (LL)/(DL) ratio is 
significant. Figure 4 was plotted for drilled shaft (D) 
installed in soil profile (1) for different values of (LL)/(DL) 
and pf = 10−4; the trend was consistent for all the other 
cases. 
   Since live load has the most effect on the results of our 
reliability study, we investigated how much the resistance 
factors would change if, instead of our choice of live load 
COV = 0.25 and bias factor = 1.0 (Ellingwood and Tekie 
1999), we used the live load COV = 0.18 and bias factor 
= 1.15 recommended by FHWA (2001).  
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Figure 3 Optimal resistance and load factors for different 

drilled shaft dimensions 
 

 
Figure 4 Variation of optimal resistance and load factors 

with live load to dead load ratio 
 
   Figure 5 shows the optimal resistance factors and also 
the resistance factors adjusted to the dead load and live 
load factors of 1.25 and 1.75 recommended by AASHTO 
(2007) for drilled shaft (D) in soil profile (1) and for pf = 
10−4. The figure shows that the resistance factors 
obtained by using both sets of live load uncertainty 
parameters are nearly identical. Figure 5 also shows that 
the adjusted resistance factors do not vary much with 
(LL)/(DL) ratio. Since the code-adjusted resistance 
factors do not vary significantly for the different drilled 
shafts, it is relatively simple to propose values that apply 
reasonably well to any of the soil profiles/situations 
studied. Based on our study, we recommend the 
following values for use in design: (RF)b

code=0.85 and 
(RF)s

code=0.75 for pf = 10−3 and (RF)b
code=0.70 and 

(RF)s
code=0.65 for pf = 10−4. 

 

 
Figure 5 Variation of optimal and code-adjusted 

resistance factors with live load to dead load ratio 
 
6.2 Drilled shafts in clay 
 



   The soil profile is assumed as a homogeneous, 
completely saturated deposit of normally consolidated 
clay with su,mean / σ’v0,mean = 0.17 and with a water table 
located at the ground surface. For this deposit, we 
considered three different clay types. All clay deposits 
have identical mean critical-state friction angle ϕc,mean = 
21°. However, we considered three different values of 
mean minimum residual-state friction angle ϕr,min,mean: 
21°, 16°, and 9°. We estimated the mean unit weight, the 
mean void ratio and the mean stress at depths along the 
pile using the relation between unit weight and void ratio 
in clay and the relation between mean effective stress 
and void ratio. Note that, in this research, the mean cone 
resistance profiles qc,mean(z) are given as inputs that 
produce the mean undrained shear strength su using 
equation [15]. The qc,mean(z) curves were initially back-
calculated from pre-assumed ratio of undrained shear 
strength to effective vertical stress (su / σ’v0), void ratio 
and stress. 
   The relative depth or slenderness ratio (D/B = Lp/Bp) 
and diameter and length of drilled shafts that we 
considered in this research ranged from values that 
would be considered very low to values considered high 
for real field conditions. We studied the responses of 
three drilled shafts with (a) mean diameter Bp,mean = 0.3 
m and length Lp = 10 m, (b) mean diameter Bp,mean = 0.9 
m and length Lp = 10 m and (c) mean diameter Bp,mean = 
1.5 m and length Lp = 10 m. Additionally, we considered 
(LL)/(DL) = 0.25, 1.0 and 2.0 for clay as well as for sand. 
   Figure 6 shows the plots of the load and resistance 
factors with respect to (ϕc,mean - ϕr,min,mean) for drilled 
shafts (a) with (LL)/(DL) = 0.25 with target failure 
probability pf = 10-3. In Figure 6, it is evident that the 
optimal load and resistance factors are independent on 
(ϕc,mean - ϕr,min,mean). The minor variations in the 
resistance and load factors observed in Figure 6 are 
typical of all other drilled shafts. 
   Figure 7 shows the plots of the load and resistance 
factors with respect to relative width (Bp/Lp) for all drilled 
shafts installed in the assumed soil profile with ϕc,mean - 
ϕr,min,mean = 12˚, with (LL)/(DL) = 2.0 and with target 
failure probability pf = 10-3. Figure 7 shows that the load 
factors are nearly independent of the relative width 
(inverse of slenderness ratio) Bp/Lp; the minor variations 
in the load factors observed in Figure 7 are typical of all 
the other drilled shafts and are random in all cases. 
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Figure 6 Variation of optimal load and resistance 

factors to (ϕc,mean - ϕr,min,mean) 
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   The soil properties have practically no effect on the 
resistance and load factors, and the pile dimensions 
affect only slightly the resistance and load factors. The 
(LL)/(DL) ratio, however, has a non-negligible effect on 
the live load factor. Figure 8 show the plots of the load 
and resistance factors with respect to the (LL)/(DL) ratio 
for drilled shaft (c) (mean diameter Bp,mean = 1.5 m and 
length Lp = 10 m) when ϕc,mean - ϕr,min,mean = 12˚ and 
target failure probability pf = 10-3. In Figure 8, the optimal 
resistance factors increase slightly and the optimal dead 
load factor decreases slightly with increasing (LL)/(DL) 
ratio; however, the optimal live load factor increases 
significantly with increasing (LL)/(DL) ratio. 
   Figure 9 shows the optimal and adjusted resistance 
factors (for the dead load and live load factors of 1.25 
and 1.75 recommended by AASHTO (2007)) for drilled 
shaft (a) (with mean diameter Bp,mean = 0.3 m and length 
Lp = 10 m) when pf = 10-3. As can be seen, the code-
adjusted resistance factors do not vary as much as the 
optimal resistance factors with (LL)/(DL) ratio. 
   Since the code-adjusted resistance factors do not vary 
significantly for the different drilled shafts, we can use the 
results of our calculations to propose resistance factors 
that will apply reasonably well within wide ranges of 
values for all the variables, at least for soil profiles that 



resemble those assumed here. We calculated the mean, 
standard deviation (SD), maximum and minimum of the 
resistance factors obtained for the different drilled shafts 
installed in a given soil profile. Based on these statistics, 
we calculated the code-adjusted resistance factors with 
99% confidence to obtain reasonable and conservative 
resistance factors: (RF)b

code=0.70 and (RF)s
code=0.73 for 

pf = 10−3 and (RF)b
code=0.66 and (RF)s

code=0.69 for pf = 
10−4. These could be rounded to 0.70 and 0.75 and 0.65 
and 0.70. 
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Figure 8 Variation of optimal load and resistance 

factors with live load to dead load ratio 
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Figure 9 Variation of optimal and code resistance 

factors with live load to dead load ratio 
 
7 CONCLUSIONS 
 
We performed a systematic probabilistic analysis to 
develop the resistance factors for drilled shafts in 
normally consolidated sand and clay for a soil variable-
based design method. The analysis involved 
identification of robust design methods, quantification of 
the uncertainties associated with the design variables 
and the design equations and subsequent performance 
of Monte-Carlo simulations to generate the probability 
distributions of the pile capacities and applied loads. The 
limit state loads and shaft and base capacities can be 
identified from these distributions based on a target 
probability of failure. From the calculated limit state and 

nominal values of shaft and base capacities and dead 
and live loads, the optimal resistance and load factors 
are obtained. The optimal resistance factors are then 
adjusted to make them compatible with the dead and live 
load factors recommended by AASHTO (2007). 
   In the course of the study, we found that the resistance 
and load factors did not vary to any significant extent 
between the different soil profiles and drilled shafts 
considered. The ratio of live to dead load was identified 
as the only variable that affected the results; however, it 
affected mostly the live load factor, with minimal effect 
on the resistance and dead load factors.  
   Based on the study, we recommended base and shaft 
resistance factors that can be used in design with the 
AASHTO (2007) recommended dead load and live load 
factors of 1.25 and 1.75, respectively. For drilled shafts 
in sand the recommended base and shaft resistance 
values are 0.85 and 0.75 for a probability of failure of 
10−3 and 0.70 and 0.65 for a probability of failure of 10−4. 
For drilled shafts in clay, the recommended base and 
shaft resistance values are 0.70 and 0.75 for a 
probability of failure of 10−3 and 0.65 and 0.70 for a 
probability of failure of 10−4.   
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