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ABSTRACT 
Swedish method of slices is widely taught in many soil mechanics courses to analyze the slope stability. From the 
literatures, two different equations are used to define the factor of safety by the Swedish method in the effective stress 
analysis. The difference lies in the effective normal stress at the base of the slices, which is derived by decomposing 
either the total weight or the effective weight of the slices. However, the physical assumptions underlying the two 
equations are not clearly explained in many soil mechanics textbooks. This paper revisits the Swedish method by 
conducting a stress analysis at the base of a slice, from which the assumptions and limitations of the two equations 
are discussed. The results show that Swedish method is only suitable to analyze the infinite slope. One of equations is 
valid for the uniform seepage condition and the other one is suitable for the hydrostatic condition. Besides, the 
computed factors of safety by both equations have greater discrepancies than those predicted by the simplified Bishop 
method. 
 
RÉSUMÉ 
On enseigne la méthode suédoise de tranches dans beaucoup de cours de mécanique de sol à analyser la stabilité de 
pente. Des literatures, deux équations différentes sont employées pour définir le facteur de la sûreté par la méthode 
suédoise dans l'analyse de contrainte effective. La différence se situe dans la contrainte effective normale à la base 
des tranches, qui est dérivée en décomposant le poids ou le poids effectif des tranches. Cependant, les prétentions 
physiques étant à la base des deux équations ne sont pas clairement expliquées dans les nombreux manuels de 
mécanique de sol. Ce article revisite la méthode suédoise en réalisant une analyse de contrainte à la base d'une 
tranche, de laquelle les prétentions et les limitations des deux équations sont discutées. Les résultats prouvent que la 
méthode suédoise est seulement appropriée pour analyser la pente infinie. Une des équations est valide pour l'état 
uniforme de fuite et l'autre convient à l'état hydrostatique. En outre, les facteurs de la sûreté calculés par les deux 
équations ont de plus grandes anomalies que ceux prévues par la méthode simplifiée de Bishop. 
 
 
1 INTRODUCTION 
 
Slope stability is one of the key components for the 
undergraduate soil mechanics course, among which the 
method of slices is taught to analyze the slope stability. 
In this method the soil mass above an assumed failure 
surface is divided by vertical planes into a series of 
slices. The forces acting on the slices are solved to 
evaluate the factor of safety (Fs) of the trial failure 
surface. However, the problem is statically indeterminate 
and many solutions have been proposed. The Swedish 
solution (Fellenius 1927 and 1936) is the earliest solution 
for the method of slices, which is still included in the 
syllabus of many soil mechanics courses and many 
design codes for practicing engineers. 

When an effective stress analysis for the slope 
stability is conducted, there are different equations for 
evaluating Fs based on the Swedish solution. However, 
many soil mechanics textbooks do not discuss the 
differences between the equations, in particular their 
limitations in analyzing the slope stability under different 
seepage conditions. As the fundamental soil mechanics 
is the cornerstone for the students to build up the 
knowledge in geotechnical engineering, it is vital to clarify 
the issue such that the students can correctly apply the 

equations in different engineering applications. The 
objectives of the paper are first to re-examine the two 
common equations for the Swedish method of slices by 
the stress analysis using the Mohr circle. Their 
discrepancies for evaluating Fs are presented by 
comparing their computed results with other methods of 
analysis. Finally the limitations in analyzing the slope 
stability under different seepage conditions are 
discussed. 
 
 
2 FACTORS OF SAFETY 
 
The following two equations for Fs are commonly found 
in the textbooks and literatures of soil mechanics for the 
analysis of slope stability using the Swedish solution: 
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where n = number of slices, ci′ = cohesion at the base of 
ith slice, φi′ = angel of internal friction at the base of ith 
slice, αi = inclination of the base of ith slice to the 
horizontal direction, li = length of the base of ith slice, bi = 
the width of ith slice (bi = licosαi), ui = total pore-water 
pressure at the base of ith slice and Wi = weight of ith 
slice. 

Eqn. (1) can be found in most of the soil mechanics 
textbooks (Whitlow 2001, Craig 2004). However Eqn. (2) 
has been recently suggested by a few literatures for the 
effective stress analysis of slope stability (Turnbull and 
Hvorslev 1967, Greenwood 1983 & 1985, King 1989, 
Morrison and Greenwood 1989, US Army Corps of 
Engineers 2003, Duncan and Wright 2005). 

Bishop (1955) presented a calculation example to 
demonstrate that conservative results are obtained from 
Eqn. (1) in which the effective normal stress at the base 
of the slices may decrease to a negative value with 
increasing α or u. Whitman and Bailey (1967) showed 
that the discrepancy of the computed results between 
Eqn. (1) and some more rigorous methods of slices can 
be as high as 60%. Duncan and Wright (1980) compared 
the minimum factor of safety calculated by different 
methods of slices and showed that the differences 
between Eqn. (1) and some more rigorous methods of 
slices can be as high as 50%. Eqn. (2) was first 
suggested by Turnbull and Hvorslev (1967) to analyze 
the slope stability in the 1960s. Greenwood (1983) used 
the Mohr stress circle to analyze the stress at the base of 
the slices and derived Eqn. (2) under the assumption of 
zero horizontal stress. Recently some textbooks and 
design manuals (US Army Corps of Engineers 2003, 
Duncan and Wright 2005) have recommended Eqn. (2) 
for analyzing the slope stability. 
 
 
3 STRESS ANALYSIS 
 
The difference between Eqns. (1) and (2) is normally 
considered as the difference in decomposing the force 
components acting on the slices. In Eqn. (1) the effective 
normal force at the base of the slice is calculated by 
subtracting the total normal force at the base of the slice 
(Wicosαi) from the total water force at the base of the 
slice (uili). On the other hand, in Eqn. (2) the effective 
weight of the slice is first calculated by subtracting the 
total weight (Wi) from the uplift pressure (uibi) and then it 
is decomposed into the effective normal force at the base 
of the slice ((Wi - uibi)cosαi). The corresponding effective 
normal stress at the base of the slice evaluated by Eqns. 
(1) and (2) is shown as Eqns. (3) and (4), respectively. 

 

′ = − = −i i
i1 i i1 i

i

cosW α
σ u σ u

l
   [3] 

( ) ( )− −
′ ′= = =

i i i i i i 2i
i2 i i iv2 i

i i i

cos cos cos
W u b W u b b

σ α α σ α
l b l

 

      [4] 
 
where the subscripts 1 and 2 in Eqns. (3) and (4) 
represent the normal stresses are derived from Eqns. (1) 
and (2), respectively. In Eqn. (3), the total normal stress 
(σi1 = Wicosαi/li) is first evaluated and then the effective 
stress principle is applied to calculate the effective 
normal stress. On the other hand, in Eqn. (4), the 
effective vertical stress (σiv2′ = (Wi - uibi)/bi) of the slice is 
first evaluated and then the effective normal stress at the 
base of the slice is found by the Mohr circle analysis. 

The Mohr circle stress method is used to analyze the 
stress conditions of a soil element at the base of a slice 
based on Eqns. (1) and (2). In the Swedish solution it is 
assumed that the resultant of the interslice forces is zero 
for each slice. Thus, the directions of the major and 
minor principal stresses are the vertical and horizontal 
directions, respectively. Figure 1a shows the total and 
effective stress circles at the base of a slice based on 
Eqn. (1). The effective normal stress (σi1′) can be 
expressed as follows: 
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It is demonstrated that Eqns. (3) and (5) are identical. 
Figure 1b shows the total and effective stress circles at 
the base of a slice based on Eqn. (2). In this case, the 
effective vertical stress (σiv2′ = σv – ui) is first evaluated, 
and then the effective normal and tangential stresses at 
the base of the slice are determined from the Mohr circle 
analysis. Eqn. (6) shows the effective normal stress 
derived from Eqn. (2), which is identical to Eqn. (4). 
 
 

 
 

Figure 1. Stress analysis for (a) Eqn. (1), and (b) Eqn. (2) 
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From the above stress analysis, Eqns. (1) and (2) can 

lead to different effective normal stresses at the base of 
the slice (σi1′ and σi2′, respectively) because the two 
equations used different assumptions. Figure 1a shows 
that the total horizontal stress at the base of a slice is 
assumed zero for Eqn. (1). On the contrary, the effective 
horizontal stress at the base of a slice is assumed zero 
for Eqn. (2) in Figure 1b, in other words the total 
horizontal stress equals the pore water pressure. 
Moreover the stress conditions at the base of slice 
evaluated by Eqns. (1) and (2) are shown as points A 
and B in Figures 1a and 1b, respectively. It is 
demonstrated that for a given total vertical stress (σv), 
σi1′ (point A) will become negative if α and u are 
sufficiently large. These limitations of Eqn. (1) are simply 
demonstrated with the help of the Mohr stress circle. 
 
 
4 RIGID BODY ANALYSIS 
 
The validity of Eqn. (1) can also be evaluated by the rigid 
body limit equilibrium method. Figure 2 shows the forces 
acting on a slice of soil subjected to a static ground water 
table. The slice can be considered as a rigid body. The 
total weight of the slice and the water forces at the 
boundary should be considered for the force equilibrium 
of the rigid body. In deriving Eqn. (1), no water force is 
considered at the vertical side of the slice. This 
assumption is questionable. If the pore water is 
incompressible, the pore water pressure should be 
isotropic no matter the pore water is under hydrostatic or 
seepage condition. The water force does not only apply 
at the base of the slice, but also applies on the vertical 
sides of the slice. Hence, a resultant water force (uilisinαi) 
in the horizontal direction should be acted on the vertical 
side of the slice. Then the equilibrium equations of forces 
for the slice in the vertical and horizontal directions 
become: 
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Figure 2. Force distribution of a slice 
 
 

By solving Eqn. (7), the effective normal stress at the 
base of the slice is identical to that evaluated by Eqns. 
(2), (4) and (6). It should be noted that the above 
analysis is valid for the hydrostatic condition and the 
analysis of slope stability under seepage condition will be 
discussed later. 
 
 
5 DISCREPANCIES BETWEEN TWO EQUATIONS 
 
Regarding a homogeneous soil slope, Fs for the slope 
stability is influenced by the height of slope (H), the slope 
angle (β), the unit weight of soil (γ), the effective 
cohesion (c′), the effective internal angle of friction (φ′) 
and pore-water pressure (u). Duncan and Wright (1980) 
recommended that the minimum factor of safety may be 
used to evaluate the accuracy of different methods of 
analysis. To take into account the effect of pore-water 
pressure on the stability of slope, the pore-water pressure 
ratio ru = ui/(γhi) (Bishop and Morgenstern 1960) is used 
to describe the distribution of the pore-water pressure 
along the slip surface. In order to minimize the effects of 
different combinations of parameters on the results of 
calculations, Fs evaluated by the limit analysis using a 
log spiral sliding mechanism is considered as the 
reference for the other methods of analysis. The following 
five methods are evaluated by Duncan and Wright 
(1980): Swedish, simplified Bishop, Janbu, Spencer, 
Morgenstern and Price. For a given β and ru, λ = 
γHtanφ′/c′ and Fs/tanφ′ can exhibit a unique relationship 
based on the limit analysis. Thus, for any combinations 
of H, γ, c′ and φ′, Fs is unique provided that β, ru and λ 
are given. They have shown that the errors of the 
Swedish method based on Eqn. (1) increases with 
increasing ru and λ. When ru = 0.6 and λ = 50, the errors 
can reach 50%. However, the maximum error from the 
other methods of slices (including the simplified Bishop 
method) does not exceed 10%. 

Despite previous studies (Turnbull and Hvorslev 
1967, Greenwood 1983, 1985, U.S. Army Corps of 
Engineers 2003, Duncan and Wright 2005) have 
recommended Eqn. (2) when the Swedish method of 
slices is used for the slope stability analysis, the 
accuracy of Eqn. (2) has not well studied. Thus the 
following example is used to compare the calculating 
errors between Eqns. (1) and (2). The comparison is 
based on the methodology presented in Duncan and 
Wright (1980). As a reference point, the limit analysis 
based on a logarithmic spiral sliding mechanism is 
performed for the stability of a slope (Michalowski 2002). 
The relationship between c′/(γHtanφ′) and Fs/tanφ′ is 
derived from the limit analysis (see Fig. 3 in Michalowski 
2002). The following parameters are used for the 
calculations: Fs = 1, ru = 0.5, γ = 20 kN/m3, H = 10 m, β = 
15o, 30o, 45o, 60o, 75o, λ = 2, 3, 4, 5, 10, 20 and 50. The 
analysis was carried out using the computer program 
SLP (Yin et al. 1992). In the original SLP program, the 
term Wicosαi - uili found in Eqn. (1) is assumed greater 
than or equal to zero. This methodology is denoted as 
Eqn. (1*) in this paper. The SLP program was modified in 
this study. The modifications are (i) the pore-pressure 



coefficient ru is used to evaluate the pore-water pressure, 
(ii) Eqns. (1), (2) and simplified Bishop method are 
implemented to calculate the minimum factor of safety. 
The computation parameters and calculation results are 
shown in Table 1. 

Consider Fs = 1 (obtained from the limit analysis) is 
the reference point, Table 1 shows that among the four 
methods, the results predicted by the simplified Bishop 
method are the nearest to those predicted by the limit 
analysis (i.e. Fs = 1). The maximum discrepancy is below 
6%. For the other three methods based on the Swedish 
method of slice, the discrepancy between Eqn. (1) and 
the limit analysis is generally the greatest. For β = 45o, Fs 
decreases with increasing λ. For β = 45o and λ = 50, Fs = 
0.424, the discrepancy is greater than 50%. Further, for β 
= 60o and λ = 20, Fs = 0.125, the discrepancy is greater 
than 80%. However, Fs predicted by Eqn. (2) is in general 
greater than 1, i.e. not conservative. It is observed Fs 
increases with increasing λ. For β = 45o and λ = 50, Fs = 
1.813, the discrepancy is greater than 80%. Further, for β 
= 60o and λ = 20, Fs = 2.647, the discrepancy is greater 
than 160%. In Eqn. (1*), the term Wicosαi - uili in Eqn. (1) 
is assumed greater than or equal to zero. As a result, the 
discrepancy between Eqn. (1*) and limit analysis is 
reduced. It is observed, Fs increases with increasing β, 
For β = 60o, Fs increases with increasing λ, at λ = 20, Fs 
= 1.39, the discrepancy is about 39%. Further, for β = 
75o and λ = 5, Fs = 1.493, the discrepancy is about 50%. 
Thus, based on the results presented in Table 1, no 
matter using Eqns. (1), (2) and (1*), the results predicted 

by the Swedish method have greater discrepancies than 
those predicted by the simplified Bishop method, in 
particular for slope with higher angle. 

 
 

6 SLOPE STABILITY UNDER SEEPAGE 
CONDITIONS 

 
A few previous studies (King 1989, Morrison and 
Greenwood 1989) have pointed out that Eqn. (1) is only 
applicable to evaluate the stability of an infinite slope 
subjected to uniform seepage condition (i.e. the flow 
direction is parallel to the slope angle) and Eqn. (2) is 
only applicable to hydrostatic condition. Thus, both 
equations may not be applied directly to a slope under a 
general seepage condition. King (1989) used the forces 
in the slice and the corresponding vectors diagram to 
illustrate his idea. On the other hand, Morrison and 
Greenwood (1989) used the water pressure at the 
interslice to analyze the problem. Further discussion of 
these approaches have been addressed by Sarma et al. 
(1990) and Chugh and Li (1990). According to the stress 
analysis presented in this study, the total horizontal 
stress of the slice is assumed zero for Eqn. (1) which is 
only satisfied by the infinite slope subjected to uniform 
seepage. On the other hand, the effective horizontal 
stress of the slice is assumed zero for Eqn. (2) which is 
only satisfied by the infinite slope subjected to 
hydrostatic condition.  

 
Table 1. Comparison between factors of safety calculated by the Swedish method of slices (Eqns. (1), (2) and (1*) and 

simplified Bishop method) 

β (o) 15 15 15 15 30 30 30 30 45 45 

λ 5 10 20 50 5 10 20 50 5 10 

Fs/tanφ' 
(a) 4.050 3.130 2.580 2.190 2.535 1.763 1.310 0.980 1.817 1.127 

tanφ' 
(b) 0.247 0.319 0.388 0.457 0.395 0.567 0.763 1.020 0.550 0.887 

φ' (o) (b) 13.9 17.7 21.2 24.5 21.5 29.6 37.4 45.6 28.8 41.6 

c' (kPa) (c) 9.9 6.4 3.9 1.8 15.8 11.3 7.6 4.1 22.0 17.7 

Fs 

 Eqn. (1) 0.808 0.811 0.829 0.866 0.842 0.787 0.757 0.760 0.851 0.771 

 Eqn. (2) 0.956 0.970 0.919 1.017 1.036 1.063 1.116 1.193 1.123 1.251 

Eqn. (1*) 0.851 0.846 0.862 0.888 0.904 0.879 0.870 0.866 0.948 0.953 
Simplified 

Bishop 0.995 0.946 0.998 0.995 0.998 0.994 0.993 0.988 0.973 0.986 

β (o) 45 45 60 60 60 60 75 75 75 75 

λ 20 50 2 5 10 20 2 3 4 5 

Fs/tanφ' 
(a) 0.740 0.450 2.989 1.280 0.650 0.310 2.295 1.454 0.991 0.707 

tanφ' 
(b) 1.350 2.222 0.335 0.781 1.539 3.226 0.436 0.688 1.009 1.414 

φ' (o) (b) 53.5 65.8 18.5 38.0 57.0 72.8 23.5 34.5 45.3 54.7 

c' (kPa) (c) 13.5 8.9 33.5 31.3 30.8 32.3 43.6 45.9 50.5 56.6 

Fs  Eqn. (1) 0.634 0.424 0.981 0.919 0.742 0.125 1.029 1.037 1.048 1.033 



Eqn. (2) 1.404 1.813 1.154 1.384 1.793 2.647 1.267 1.457 1.73 2.076 

Eqn. (1*) 0.931 0.949 1.037 1.094 1.195 1.390 1.097 1.181 1.319 1.493 
Simplified 

Bishop 0.969 0.968 0.973 0.985 0.982 0.947 0.953 0.962 0.976 0.983 

(a) Fs/tanφ' is evaluated from Fig. 3 in Michalowski (2002)  
(b) tanφ' and φ' are calculated from Fs/tanφ' assuming Fs = 1 
(c) c' is calculated from H, λ, γ and tanφ′ 

 
 
7 CONCLUSIONS 
 
Two common equations for the factor of safety based on 
the Swedish method of slices are re-examined by the 
stress analysis and rigid body limit equilibrium analysis. 
Furthermore a calculating example is used to compare 
the accuracies of the two equations with the simplified 
Bishop method. The following conclusions can be drawn: 
 
(i) The underlying assumptions of Eqns. (1) and (2) are 
different. Eqn. (1) assumes the total horizontal stress at 
the base of a slice is zero, but Eqn. (2) assumes the 
effective horizontal stress at the base of a slice is zero. 
  
(ii) The limitations of Eqns. (1) and (2) are identified. 
Eqn. (1) is valid for the analysis of infinite slope 
subjected to uniform seepage and Eqn. (2) is suitable to 
analyze the infinite slope under hydrostatic condition.  
 
(iii) The factors of safety computed by Eqns. (1) and (2) 
have greater discrepancies than those predicted by the 
simplified Bishop method, in particular for slope with 
higher angle. 
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