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ABSTRACT 
From several years ago, the method proposed by Prater (1977) to calculate the lateral pressures acting over shaft 
linings has been in use. Unfortunately, some algebraic errors have been found in his analytical development. Every step 
of that development was checked and corrected if errors were found, to find the equations that describe the pressure 
distribution in accordance to the suppositions made by Prater in his model. The procedure was combined with an 
analytical method proposed to study the soil-tunnel interaction problem (Romo, 1984). This method includes the 
phenomenon of interaction lining-soil. The combination of the two methods is made under the hypothesis that the 
mechanical elements of the shaft lining can be calculated with the analytical solution of the problem of interaction soil-
lining of the tunnel, considering the pressures calculated with Prater’s (modified) model. 
 
RESUMEN 
Desde hace varios años se ha utilizado el método propuesto por Prater (1977) para el cálculo de las presiones laterales 
sobre la superficie de lumbreras. Sin embargo, se han encontrado algunos errores algebraicos en su desarrollo 
analítico. Se procedió a revisar cada paso de dicho desarrollo y a corregir los errores encontrados, para así llegar a las 
ecuaciones que describen la distribución de presiones de las suposiciones hechas por Prater en su modelo. Se 
combinó el procedimiento con un método analítico que permite calcular los elementos mecánicos del recubrimiento de 
túneles (Romo, 1984). Este método incluye el fenómeno de interacción revestimiento-suelo. La combinación de los dos 
métodos se hace bajo la hipótesis de que los elementos mecánicos del revestimiento de la lumbrera se pueden 
calcular con la solución analítica del problema de interacción suelo-revestimiento del túnel, considerando las presiones 
calculadas con el modelo (modificado) de Prater. 
 
 
 
1 INTRODUCTION 
 
Prater’s method (1977) for determining the pressure 
distribution acting over shaft linings has been used for a 
long time in engineering practice. Its use is very 
convenient because it requires little information about the 
soil and the lining to get to useful results for design 
purposes. In his publication, Prater assumed a Mohr-
Coulomb failure criterion, with a conic failure surface 
around the lining. Although Figures presented in his 
article about the behavior of the different parameters 
involved in the use of the method are consistent with the 
analytical procedure that he proposes, various errors 
were found in the final formulae of the procedure. As 
pointed out later, the graphics presented in the original 
paper are correct, but equations are incorrect. From 
Prater’s assumptions, the analytical procedure was 
repeated searching to fix the errors. The corrected 
equations are presented in this paper. 

A method to compute the mechanical elements in the 
lining is also presented. It was put together with Prater’s 
to calculate stresses and bending moments in shaft 
linings. The method has the particularity of considering of 
the relative stiffnesses of the soil and the lining. 

A calculation methodology based in the combination 
of both methods to obtain lateral pressures and 
mechanical elements in the shaft lining is also presented 
in this paper. 
 

2 CALCULATION OF THE PRESSURE BY 
PRATER’S METHOD (CORRECTED) 

 
Based in Berezantzev’s (1958) results about the 
application of the limit equilibrium method with plane 
strain conditions, Prater (1977) proposed a conic-shaped 
failure surface since it  approximates to Berezantzev’s 
results (op. cit). Once the conic surface was proposed, 
Prater calculated the pressure exerted over the shaft 
assuming a Mohr-Coulomb failure criterion, considering 
just purely frictional materials. The inclination angle of the 
failure surface proposed by Prater, α (see figure 1), as it 
happens in slopes, it is strongly related with the friction 
angle φ of the soil surrounding the shaft. 
 
 
2.1 About the corrections made 
 
It is important to point out that despite the errors in 
Prater’s equations, the graphics presented in diverse 
references, both in international magazines and in 
textbooks, are correct. The correction made in this paper 
is in equations that generate the above mentioned 
graphics. With an error in equations, it was impossible to 
automate the calculations of Prater’s method. 
Nevertheless, those designs made with the graphics 
presented originally by Prater are free of errors 
conforming to this theory. 
 



 

 
 
Figure 1. Faiulure surface around the shaft proposed by 
Prater (1977) 
 
2.2 Calculation algorithm 
 
The method for calculating the pressure distribution 
consists in as series of calculations along the extension 
of the shaft, all of them iterative, to define the variable 
inclination α of the failure surface through the shaft depth. 
The complete shaft depth h is traversed varying it from 
top to bottom. 

To calculate the pressure distribution over the shaft 
lining, the following steps have to be taken: 

First, β is computed with equation (1). The coefficient 
β is a fraction of the friction angle that is inside the limits 
of -φ and φ, for the active and passive pressure 
conditions respectively. 

 

 
     (1) 

 
In practice, it is usual to first excavate portions of the 

shaft and then the linings are placed in position, what lets 
the soil expand and act over the lining and not the 
opposite. That practical case guarantees the existence of 
active pressure, expressed in equation (1) in terms of 
coefficient β. 

Next the coefficient of soil pressure is calculated with 
equation (2). 
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Before continuing the calculations, a resolution dh of 

the analytical model, a differential of the total depth H, 
must be defined in distance units. This resolution is the 
principal responsible of the accuracy of the calculated 
pressure distribution. In his paper, Prater did not mention 
any recommendation about this parameter highly 
influential in the results of the model. In parametric 
analysis made about Prater’s model, it was found that 
using dh = 0.1m or less is a good choice for the analysis. 
Values of dh much bigger than 0.1m produce pressure 
distributions with maximum pressures that are a lot 

smaller than those produced by a dh=0.1 m, moving 
away from the safer side. For values smaller than 
dh=0.1m, when dh tends to 0, there is no significant 
change in the values of the maximum pressure nor in the 
distribution generated by the model. 

The quantity of calculations to be made depends of dh 
because H/dh is the total number of calculation steps 
used in the method. 

For the first depth h=dh, the value of n is computed 
with equation (3), in which r is the shaft radius and h is 
the depth of actual calculations. 

h
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Then, with equations (4) and (5), the failure surface 

inclination α must be found. 
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In which: 
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It is necessary to propose an α such that the value of 

n, computed with equation (4) is equal to the one 
calculated with equation (3). 

The graphic in Figure 2 was made approximating n to 
infinity, condition that exists near the surface. It is clear in 
the graphic that the values of α and φ are lineally related 
for the condition mentioned before. With that graphic, or 
with equation (6), the initial value of α for the first 
approximation of the first depth h=dh can be obtained 
and have a quicker convergence of the iterative method. 
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Figure 2. Lineal relationship between α and φ for n→ ∞. 

 



 

For the active pressure condition, the value of α will 
be slightly bigger than the one obtained with equation (6). 
In parametric analysis and in the example of this paper, 
the Newton-Raphson method was applied in equations 
(4) and (5) to speed up the model’s convergence. 

Then the coefficient of horizontal pressure kr is 
calculated with the next expression: 
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Aftewards, the accumulated horizontal pressure E is 

calculated as a fraction of the vertical soil pressure using 
it’s volumetric weight γ. 
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Then, the pressure at depth h can be computed with 

equation (9). 
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For the first depth (h=dh), Ei-1 is equal to 0. 

Subsequently, the depth of calculation is increased (h i=hi-

1+dh), and the steps that include equations (3) to (9) are 
followed. Beginning with the second depth, the inclination 
of the failure surface α used to start the iterations in 
equations (3) and (4) is the value of α obtained in the 
previous depth. 
 
2.3 Model’s behavior and design considerations 
 
To illustrate the model’s behavior, an example is 
presented in which: γ=2 t/m

3
, φ=30º, r=2 m and H=20 m. 

Since the shaft is embedded in a homogeneous soil 
stratum, the values of β and λ are constant: β=-30º and 
λ=0.5. In Figure 3 the distributions of the parameters that 
change with depth can be seen. 

In Figure 3, it can be observed that the inclination of 
the failure surface α increases with depth, while the 
pressure coefficient kr decreases. In the pressure 
distribution a maximum pressure Pmax can be noticed at 
hpmax depth. In this example Pmax=2.65 t/m

2
 y hpmax=8.4 m. 

The accumulated horizontal pressure E increases up to 
hcr, the depth where the soil pressure becomes null 
according to the analytical model, in this case 
hcr=17.18m. 

There are cases where hcr will not be present because 
Pmax will move closer to the bottom of the shaft. In other 
cases, hpmax will be equal to the total depth of the shaft. 
These behaviors are a consequence of the periodical 
nature of the equations of the model and of the fact that 
such period is variable. Also, the location of Pmax, hcr, 
does not depend on the soil’s volumetric weight but it is 
strongly influenced by the friction angle φ, while the 
maximum pressure depends on γ. 

 

 
Figure 3. Variation of different parameters needed to 
obtain the pressure distribution in the example problem. 

 
 
It is important to mention that, although the method 

can predict very low or even negative pressures near the 
bottom of the shaft, it is recommended to use the 
maximum pressure Pmax for design purposes. 

Regarding the value of the maximum pressure 
calculated by Prater’s method, there are comparative 
studies between different analytical methods published in 
the international technical literature (e.g., Tobar y Meguid, 
2010). They show that Prater’s calculations yield values 
that are larger than the ones obtained with the methods 
by Berezantzev (1958) and Terzaghi (1943), being the 
last one of the most used. Nevertheless, the maximum 
pressure computed by Prater is approximately 30% less 
than the maximum value calculated in Cheng and Hu’s 
method (2005). Prater’s method is a modification of 
Berezantzev’s (1958), which uses a variable coefficient λ 
in place of an assumed value of 1, as is the case in 
Berezantzev’s method. In this manner, Cheng and Hu 
obtained a range of values that theoretically can take the 
lateral pressures acting over a shaft, being the lower limit 
the one that corresponds to λ = 1 (Berezantzev’s case), 
and the upper limit the value obtained with λ=k0. Given 
that Prater’s method, as Cheng and Hu’s, is also obtained 
from Berezantzev’s, the results obtained are in the same 
order of magnitude that can be obtained with the 
simplified methods available at the moment. It would be 
interesting to make a numerical-experimental 



 

investigation to test the effectiveness of these analytical 
methods. 
 
 
3 CALCULATION OF STRESSES IN THE SHAFT 

LINING 
 
Once the pressure distribution is obtained with Prater’s 
method, the stresses acting in the shaft lining (Romo, 
1984) can be computed. 

This method considers explicitly the relative 
stiffnesses of the lining and the soil mass. Moreover, it 
takes into account the potential sliding between the lining 
and the soil mass that surrounds it, and the way the loads 
are applied over the shaft, according to different 
constructive methods. Taking into account these 
interactions, one can find a stress distribution that will 
vary from the one that is obtained with methods that 
suppose totally rigid supports and the ones that suppose 
totally flexible supports. 

In researches on the behavior of tunnel linings, Peck 
(1969) demonstrated that a support idealized as totally 
flexible in an anisotropic stress field will deform until the 
acting stresses in the lining are uniform, i.e., there will be 
no bending moments (see Figure 4a). Meanwhile, a rigid 
lining will not change its shape and consequently, the 
original anisotropic stress field is preserved. Accordingly, 
the lining is subject to bending moments (See figure 4b). 
Given that there are no essential differences between the 
tunnel and shaft linings along their cross section, the 
concepts developed by Peck can be extrapolated to the 
shaft problem. 
 
 

 
 
Figure 4. Stress distribution over ideally rigid and ideally 
flexible linings subjected to anisotropic stress fields. 
 

3.1 Method’s considerations 
 
Even though it was developed originally to calculate 
acting stresses over tunnel linings, the similarity between 
the two geotechnical system, tunnel and shaft, at 
practical and theoretical levels, allows its application to 
the case of shafts. 

The mass of soil is considered elastic, isotropic, 
homogeneous and infinite, subjected to a initial load 
equal to the stress in the soil at the central line of the 
shaft. The shaft lining is treated as an elastic shell in 
which both the circumferential and the flexion strains are 
taken into account. It is considered that the strains occur 
only in perpendicular planes to the shaft axis, in planar 
sections. 

The method makes two distinctions of possible 
processes of load application, intimately related to the 
different constructive methods of tunnels. To adapt the 
tunnel model to be a shaft one, it will be necessary to 
analyze them. The load can be external, meaning that the 
tunnel has been excavated and lined before the loads 
corresponding to the free-field conditions are applied. 
This condition is similar to the one occurring in the 
construction of shallow sewage tunnels, where a box is 
first excavated to put in place the pipe that is then loaded 
with the compacted filling soil, and in tunnels exposed to 
loads caused by explosions (see Figure 5a). The other 
condition supposes that the tunnel is excavated and 
supported after the loads corresponding to the free-filed 
stresses have been applied (see Figure 5b). 

 
Figure 5. External load and excavation discharge 
processes. 



 

It is evident that the condition of load by excavation is 
the one that is the one alike to the most usual methods in 
shaft construction; therefore it will be the condition that 
will be adapted for the calculation of stresses in shaft 
linings. 

On the other hand, the method includes two 
conditions of sliding between the soil and the lining: one 
in which there is complete transmission of the shearing 
stresses, without relative movement between the support 
and the soil, and other in which relative displacements 
between the two are allowed, i.e., without transmission of 
shear stresses. Of these two conditions, the one that is 
the closest to Prater’s model is the one that does not 
consider shear stresses at the soil – shaft interface. 
 
3.2 Dimensionless factors of stiffness 
 
The system’s stiffness is given by two kinds of 
stiffnesses. One is the longitudinal strain stiffness, which 
is the measure of uniform pressure acting over the lining 
required to cause a diametric unitary strain in the lining 
without changing its original shape. The second one 
involves the bending stiffness and is a measure of the 
magnitude of the non-uniform pressure surrounding the 
lining required to make occur a diametric unitary strain 
that results in a change of the initial geometric shape of 
the cross section, in other words: it takes the shape of an 
oval. 

The Compressibility factor, C*, is a measure of the 
stiffness to extension of the medium relative to the one of 
the lining. It can be calculated with equation (10), where 
E is the elasticity modulus and ν is the Poisson’s ratio, 
both of the soil, while Es, As, νs and R are the elasticity 
modulus, the sectional area and the Poisson’s ratio of the 
lining section, respectively. 
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An analogous factor F*, that takes into account the 

relative bending stiffnesses of the soil-lining system. It 
can be obtained with the following expression: 
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F* will depend largely on the construction system. The 

joints between the arch lining-segments will determine, in 
great measure, the bending stiffness of a cross section. 
In general, F* will be greater than 10, even for the most 
rigid linings. 

These factors will serve to consider the whole system 
stiffness and thus determine the stresses to which it will 
be subject. 
 
3.3 Equations to compute the stresses 
 
For the calculation of the distinct acting stresses, the 
following equations are used. As mentioned before, 
equations are applied for the condition of relative 
displacements at the soil-shaft interface. 

The following are equations proposed originally by 
Romo (1984) for the calculation of the mechanical 
elements, referred to Figure 6. 

 

 
Figure 6. Notation for Romo’s method. 
 
 
Axial force, T: 
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Bending moment, M: 
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Radial displacement of the support, us: 
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Tangential displacement of the support, vs: 
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In which: 
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And: 
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The coefficient k that appears in equations (12) to (17) 

corresponds to the ratio between the horizontal and 
vertical stresses. For the case of tunnels in 
homogeneous and isotropic materials, the value of k is 
constant through the tunnel’s axis and its value is 
different than 1 for geomaterials. Nevertheless, for the 
shaft case this condition is different, as commented in 
section 3.4. 
 
3.4 Adaptation to the shaft problem 
 
The most significant change between the conditions 
found in a tunnel and in a shaft is the orientation of the 
axis of the orifice in respect of the horizontal and vertical 
static stresses. 

In Romo’s model, the factor k is the coefficient of 
horizontal pressure, that represents the relationship kept 
between the horizontal and the vertical stresses, and it is 
employed to define the anisotropic pressure field. This 
pressure difference gives origin to bending moments that 
act in the cross section of the tunnel. 

In the other hand, when orienting the axis of the 
tunnel in vertical direction, an isotropic pressure field is 
generated in the plane of the cross section of the shaft. 
This happens because the vertical stress acts in the 
same line of the shaft axis, thus the horizontal stress is 
the only one acting on the lining cross section. 

As consequence of the state of isotropic pressures, 
the value of k that appears in equations (10) to (15) is 
equal to 1 for the static case. This implies that bending 
moments acting in the plane of the cross section of the 
shaft are not generated, nor the tangential displacements 
of the support. 

Equations for the static case of the shaft will be: 
Axial force, T: 

 

    2cos211 *

2

* aa
pR

T
o 

 (18) 
 
Radial displacement of the support, us: 
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3.5 Seismic considerations 
 
The exposed method can also be used for the seismic 
case, in an approximate way with the use of seismic 
coefficients. Under the action of the seismic load, the 
value of the coefficient k in shafts will be different from 1 
since, for the seismic condition, it will represent the ratio 
between the orthogonal components of the earthquake 
acting in the plane of the cross section of the shaft. 
According to the building regulations of Mexico’s Federal 

District (2004), the ratio between horizontal orthogonal 
components will be considered equal to 0.30. 
 
 
4 CONCLUSIONS 
 
With the corrections made to Prater’s method, it is 
possible to make software to speed up the calculation of 
the pressure distribution acting over shafts. 

The presented methodology is simple to apply, 
because, in addition of its accessible algebraic structure, 
it requires few input parameters to obtain both the lateral 
pressure distribution and the mechanical elements in 
shaft linings. 

Even as Prater’s method has proven to yield values 
inside the order of magnitude obtained with the simplified 
analytical methods that are available at the moment, and 
the method of tunnel lining analysis (Romo, 1984) has 
been shallowly compared with some field measurements, 
it is justifiable to make experimental and numerical 
researches to find the approximation of the methodology 
here presented against the reality. Even more, having 
field measurements would be an excellent way of 
comparing the results obtained with the proposed 
methodology. 
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