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ABSTRACT 
The resonant-column (RC) test is an ASTM standard commonly used for dynamic characterization of soils under 
different isotropic confinements and shear strain levels. The free-decay response of a soil specimen shows a nonlinear 
behaviour when the strain levels exceed the threshold shear strain. However, the dynamic parameters are commonly 
determined assuming a linear single-degree-of-freedom (SDOF) model. This paper presents a new analysis 
methodology, based on the complex exponential method (CEM), for the nonlinear dynamic characterization of soil 
specimens using the free-vibration response in RC testing. The effectiveness of the new methodology is demonstrated in 
a dry-sand specimen tested under isotropic loading and unloading conditions, two confining pressures (40 kPa and 100 
kPa), and different shear-strain levels (10�� ≤ 	��	
 ≤ 1.7 × 10��). The results from the CEM are compared with the 
results from traditional SDOF methods (transfer function and free vibration). The results show that the damping ratio can 
be underestimated up to 80% at large strains when computed using SDOF models. In a nonlinear free-vibration test 
analyzed using the CEM, it is possible to observe that the dry-sand specimen becomes denser (stiffer) after large-strain 
cycles. Thus, the shear wave velocity (resonant frequency) increases at the low shear strain levels imposed during the 
same test. 
 
 
RESUMEN 
El ensayo de columna resonante (RC) es un estándar ASTM comúnmente usado para la caracterización dinámica de 
suelos sometidos a diferentes presiones de confinamiento y niveles de deformación por corte. La respuesta de vibración 
libre de un espécimen de suelo ensayado en RC muestra un comportamiento no-lineal cuando los niveles de 
deformación exceden el umbral de deformación por corte. Sin embargo, los parámetros dinámicos son comúnmente 
determinados asumiendo un modelo de un solo grado de libertad (SDOF). Este paper presenta una nueva metodología 
de análisis basada en el método exponencial complejo (CEM) para la caracterización dinámica no-lineal de 
especímenes de suelo usando la respuesta de vibración libre en ensayos de RC. La eficacia de la nueva metodología 
es demostrada en un espécimen de arena, en condición seca, ensayado bajo condiciones que carga y descarga, dos 
presiones de confinamiento (40 kPa y 100 kPa) y diferentes niveles de deformación por corte (10�� ≤ 	��	
 ≤ 1.7 ×10��). Los resultados del CEM son comparados con los valores obtenidos usando los métodos tradicionales (función de 
transferencia y vibración libre para un SDOF). Los resultados muestran que el factor de amortiguamiento puede ser 
subestimado hasta en 80 % a elevadas deformaciones por corte cuando éste es calculado usando los métodos 
tradicionales. Adicionalmente, la arena se hace más densa (rígida) después de la aplicación de ciclos a elevados niveles 
de deformación por corte. Como consequencia, la velocidad de onda de corte (frecuencia de resonancia) aumenta a 
bajo niveles de deformación por corte impuestos durante la misma prueba. 
 
 
1 INTRODUCTION  
 
The resonant-column (RC) test is an ASTM standard that 
has been extensively used for dynamic characterization of 
soils under different confinement and shear strain 
conditions (Wilson and Dietrich 1960; Hardin and Richart 
1963). In this device, a fixed-free cylindrical soil specimen 
is excited in torsion. The response of the specimen is 
measured using a piezoelectric accelerometer located at 
the driving plate. The shear wave velocity of the soil 
specimen is estimated by solving the equation of wave 
motion of a rod with an attached mass at the top (Hardin 
and Richart 1963). 

The shear modulus is then determined from the shear 
wave velocity. The damping ratio can be obtained either 
from the analysis of the input excitation and the response 

of the specimen (frequency domain) or from the analysis 
in the time domain of the free-decay response when the 
specimen is subjected to an impulsive excitation. 

The free-decay response of a soil specimen in the 
time domain shows a nonlinear behaviour when the strain 
levels exceed the threshold shear strain; however, the 
dynamic parameters are commonly determined assuming 
a linear single-degree-of-freedom (SDOF) model. 

This paper presents a new analysis methodology, 
based on the complex exponential method (CEM, 
Osborne and Smyth 1995), for the nonlinear dynamic 
characterization of soil specimens using the free-decay 
response in RC testing. The nonlinear response of the soil 
specimen is represented as a superposition of damped 
exponential functions. The use of the free-decay response 
is also beneficial because it reduces the number of 



 

excitation cycles imposed on the specimen during testing 
and thus reduces the disturbance of the specimen.  

The new methodology is demonstrated on a dry-sand 
specimen tested under isotropic loading and unloading 
conditions, two confining pressures (40 kPa and 100 
kPa), and different shear-strain levels (10�� ≤ 	��	
 ≤1.7 × 10��). The results from the CEM are compared with 
the results from traditional linear methods (e.g. transfer 
function and free vibration of a SDOF system).  
 
2 COMPLEX EXPONENTIAL METHOD (CEM) 
 
The main advantage of the CEM with respect to Fourier 
analysis is the representation of transient time signals as 
a summation of exponential functions instead of 
continuous sinusoidal functions; which give a correct 
representation of a transient signal only when the time 
window tends to infinity. The CEM has two main 
differences with respect to the Fourier transform: a) 
sinusoidal functions can grow or decay; thus, damping 
ratios are computed directly, and b) the resolution in the 
frequency domain is increased because the frequencies 
of the exponential functions are estimated directly in the 
time domain.  

In this work, the CEM is used for the analysis of the 
free-vibration response of soil specimens tested in the RC 
device. As a result, the dynamic properties of soil 
specimens are obtained (e.g. resonant frequencies, 
damping ratios, and maximum amplitudes of vibration 
corresponding to each of the damped modes).  

The free vibration response of a SDOF system in 
discrete form is represented as 

 �� = �����(���) cos(��(� !) + #)																																												[1]                                      
 
where Δ! is the interval sampling, and �: 0, 1, …*+. For a 

MDOF system, Eq. 1 becomes in 
                     

�� =,�-���.�.(�/�)012	(��-(� !) + #-)
3
-45

																										 [2] 
 
which can also be expressed as a sum of exponential 
functions 
 

�� =,�7-
3
-45

8-�																																																																																[3] 
 
where N is the number of degrees of freedom  
 8- = �(��.�.:;�.<)	�� 																																																																						[4] 
 
and >? = −1. Taking the natural logarithm of Eq. 4, the 
following relationships for �	and A	are obtained 
 

�- = B(CDEF(ln(8-)))?+ (I�EJ(ln(8-)))?Δ! 																								[5] 
 
and 

A- = I�EJ(ln(8-))B(CDEF(ln(8-)))? + (I�EJ(ln(8-)))? 																									[6] 
 
The CEM is based on the evaluation of the corresponding 
impulse response function (IRF). Therefore, if Eq. 2 
represents the IRF of a MDOF system, the transfer 
function is given by  
 

M(8) = N(8)�(8) =, ��8��
O

�4P
																																																								[7] 

 
where N(8)	and �(8)		are polynomial functions of orders 
M and N (M and N represent the number of zeros and 
poles, respectively). Equation 7 can be expanded as 
 QP + Q58�5 +⋯QS8�S= (TP + �58�5 +⋯�O8�O)(1+ E58�5+⋯E38�3)																																																[8] 
 
where QP , Q5 ,… QS and E5 , E? ,… E3 are the coefficients of 
the polynomials N(8)	and �(8),		respectively. Since these 
coefficients are real, the poles and zeros of M(8)	 occur in 
complex conjugate pairs. Equating powers of Z on each 
side Eq. 8, the following set of equations are obtained 
 QP 	 = �P	Q5 	= �5 + �PE5.QS = �S + �(S�5)E5 +⋯�(S�3)E30			 = �(S:5) + �SE5 +⋯�(S�3:5)E3 																																				[9]..0		 = �O + �(O�5)E5+⋯�(O�3)E3  

 
Equation 9 can be represented in matrix form and 
partitioned into two parts. The lower partition is given by 
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For d = *, the resulting system of equations is 
underdetermined if e < 2*, and it is overdetermined if e > 2*. In both cases, the resulting matrix is not square. 
The rows of this matrix contain consecutive sections of 
the measurements of �� obtained by a moving window 
containing * − 1 elements.  

Once the coefficients Eh are determined from solving 
the equation system given by Eq. 10, the coefficients 8- 
are obtained from 

 



 

8- = I11!2(�(8) = 1 + E58�5 +⋯E38�3)																								[11] 
 
for i = 1,2,…*.	The resonant angular frequencies (�-) 
and damping ratios (A-) are then computed using Eqs. 5 

and 6, respectively. The coefficients �7- 	are obtained by 
solving the system of equations defined by Eq. 3. These 
coefficients are complex number because of 8-. Finally, 
the amplitude (�-) and phase angle (#-) of each 
exponential function are computed from 
 

�- = j�7kj = l(I�EJm�7kn)?+ (CDEFm�7kn)?																								[12] 
 
and 

#k = tan�5(CDEFm�7-nI�EJm�7-n )																																																															[13] 
 
The selection of the appropriate order (*) is one of the 
most critical aspects of any parametric method (Braun 
and Hammond 1986). There is no a single theory for the 
determination of the optimum order for the CEM. If a low 
model order is selected, the obtained frequency response 
function has insufficient resolution; on the other hand, a 
high model order can yield false peaks in the frequency 
response function. In this work, the order of the CEM is 
determined based on the residual sum of square errors 
between the original and fitted signals. The fitted signal is 
reconstructed using only the exponential functions 
identified as vibration modes. 

 
3 TESTING METHODOLOGY 
 
The proposed new technique is demonstrated by 
performing RC testing on a dry-sand specimen in free-
vibration under loading (L) and unloading (U) conditions, 
two isotropic confinements (40 kPa and 100 kPa), and 
different shear strain levels (L1, γmax = 1.34x10

-5
 up to L9, 

γmax = 1.52x10
-3

). In this work, the effects of the additional 
damping ratio introduced by the RC driving system or 
EMF damping (Cascante et al. 2003, 2005) are not 
removed from the time signals. The EMF damping is 
actually used to increase the real damping ratio of the 
sand specimen to show the validity of the new 
methodology when a wider range of damping ratios is 
present in a signal. Therefore, the free-decay damping 
ratios presented in the following sections are not the 
correct damping ratios for the dry-sand specimen. The 
correct damping ratios are computed using the transfer 
function method. The removal of EMF damping from free-
decay tests has been addressed in previous studies 
(Cascante et al. 2003, 2005, Wang et al. 2003, Meng and 
Rix 2003). 

The shear wave velocity and damping ratio are 
computed for each shear strain level applied to the 
specimen; which is given in terms of the height of the 
specimen (H) and the maximum displacement of the free-
decay response (d)  
 

�stu = 2vM 																																																																																							[14] 
 

The displacement time history is computed from 
integrating twice the acceleration time history measured 
on the driving plate at the top of the specimen. The shear 
wave velocity is computed from  
 

wx = �.ME 																																																																																									[15] 
 
where the coefficient E is obtained by solving the moment 
equilibrium equation for a cylindrical specimen under 
fixed-free boundary conditions; which is given by 

 yyP = E tan(E)																																																																																		[16] 
 
The mass polar moment of inertia of the specimen y is 
computed from the specimen properties; whereas the 
corresponding moment of inertia of the driving plate yP is 
measured experimentally. The resonant frequency	� and 
damping ratio A are computed by curve-fitting the transfer 
function of the system (frequency domain analysis) and 
the free-decay responses (CEM, time domain analysis). 
For the calculation of the transfer function, the input signal 
is the force applied by the driving plate to the specimen, 
which is proportional to the current through the coils, and 
the output signal is the response of the accelerometer at 
the top of the specimen. 
 
4 EXPERIMENTAL SETUP 
 
Figure 1 presents a schematic diagram of the 
instrumentation used in this work. A square pulse is 
generated by a function generator (HP-33210A) to excite 
the driving coil system. The low-power input signal is 
amplified by a power amplifier (Bogen 250W). The axial 
deformation of the specimen is measured with an LVDT 
(Schaevitz 500HR) mounted inside the RC device. The 
free-decay of the specimen is measured with an 
accelerometer (PCB 353B65), which is mounted on the 
driving plate at the top of the specimen.  

The cell and specimen pressures are controlled 
independently by a pneumatic pressure control panel 
(Brainard-Kilman E-400). The maximum pressure of the 
system is 685 kPa.  The height and radius of the 
specimen are M = 145 mm and z = 35	mm, respectively.  

The output signal of the accelerometer and the 
impulsive excitation (input signal) are processed with a 
dynamic signal analyzer (HP-35665A) to compute the 
transfer function. The resonant frequency and damping 
ratio are extracted from the measured transfer function. 
Finally, the measured free-decay response of the 
specimen is stored in a computer.  
 
5 RESULTS, ANALYSIS, AND DISCUSSION 
 
To demonstrate the proposed methodology, the 
evaluation of the damping ratio and shear wave velocity of 
a dry-sand specimen as function of the maximum shear 
strain are presented next. The results from the CEM 
under two isotropic confinements (41 kPa and 100 kPa) 
are compared with standard RC results (transfer function 



 

and free vibration of a SDOF system) for different shear 
strain levels (L1 to L9). 

 
5.1 Isotropic confinement {P = 41 kPa 
 
The free-decay response of the soil specimen is obtained 
for a wide range of shear strains. In this work, low strains 
are defined as � ≤ 4 × 10��; medium strains as 4 ×10�� < � ≤ 4 × 10�|; and large strains as � > 4 × 10�|. In 
loading condition, four RC tests correspond to low strains 
(L1-L4); three RC tests, at medium strains (L5-L7); and 
two RC tests, at large strains (L8-L9). Furthermore, two 
RC tests at medium (U1-U2) and at low (U3-U4) strains 
were performed for unloading condition.  

 
 

 
 

Figure 1. Schematic diagram of the instrumentation used 
for the free-decay response in RC testing 

Figure 2 shows typical results indicating that the curve-
fitting of a large strain free-decay response (test L8) using 
a SDOF model cannot predict correctly the measured 
signal. The ordinate axis represents the measured 
acceleration on the driving plate at the top of the 
specimen. The maximum shear strain applied to the soil 
specimen is γ�	
 ≈ 6.6 × 10�|. The curve-fitted resonant 
frequency and damping ratio are f = 45.0	Hz and ξ =11.5%. The nonlinear behavior characterized by the 
decrease in the period (increase in frequency) as the 
acceleration amplitude decreases is observed in the last 
three cycles of the signal. 

The curve-fitting of the large-strain test L8 using the 
CEM is presented in Figure 3b. The predicted response 
using four exponential functions is in agreement with the 
measured one for all the time window. The exponential 
functions identified using the CEM are shown in Figure 
3a. The identified resonant frequencies and damping 
ratios are also shown in this figure. The lowest frequency 
identified using the CEM is called the main frequency of 
the system; whereas the other ones are referred as higher 
frequency components. The SDOF method overestimates 
the main frequency by 13% and underestimates the 
damping ratio by 60% with respect to the values obtained 
by the CEM. 

The plots of the instantaneous frequency and damping 
ratio for the large-strain test L8 using the Hilbert transform 

are presented in Figure 4. The instantaneous damping 
ratio is maximum at time t = 13.3	ms (ξ = 24%); which 
corresponds to an instantaneous frequency of f =42.3	Hz		(f = ω/2π).  

 

 
Figure 2. Measured free-decay response in a large strain 
RC testing (test L8) and curve-fitted signal using a SDOF 
model 

 
Figure 3. Decomposition of a large strain free-decay test 
(L8): Main four exponential functions from the CEM (a), 
measured and curve-fitted responses by superposing the 
main four exponential functions (b) 



 

This damping ratio characterizes the attenuation of the 
first half a cycle of the signal (Figure 4a). The 
instantaneous frequency is 9% greater whereas the 
damping ratio is 14% smaller than the corresponding 
values obtained from the CEM for the main vibration 
mode. These differences are likely generated by the 
inability of the Hilbert transform to correctly predict the 
frequency and damping ratio at the starting point of the 
response (! < 13.3	D2). In general, the instantaneous 
frequency increases and the damping ratio decreases as 
the shear strain level decreases (low accelerations). The 
maximum frequency and minimum damping ratio from the 
instantaneous plots tend toward the corresponding values 
obtained from the CEM. 
 
 

 
 
Figure 4. Use of the Hilbert transform on a large-strain 
free-decay test (L8): time history (a), instantaneous 
frequency (b), instantaneous damping (c) 

The results from the CEM and the SDOF model are 
similar for small strains; the maximum differences are less 
than 9% and 1% for damping ratios and resonant 

frequencies, respectively. As expected, the resonant 
frequency decreases and the damping ratio increases 
with increasing shear strain levels (loading condition). 

Two and three exponential functions are required to 
model the free-decay response at medium strain levels. 
Even though the main resonant frequencies estimated 
from the SDOF model and the CEM are similar (maximum 
difference less than 2%), the SDOF model 
underestimates the damping ratio by 21%, 31%, and 57% 
for shear strains of 0.65x10

-4
, 1.4x10

-4
, and 2.8x10

-4
, 

respectively. 
At higher strain levels, the free-decay response is 

modeled by four exponential functions. The maximum 
difference between the SDOF model and the CEM for the 
main resonant frequencies is 13%. On the other hand, the 
SDOF model underestimates the damping ratio in 59% 
and 38% for shear strains of 6.7x10

-4
 and 16.0x10

-4
, 

respectively. For the test L9, γmax = 16.0x10
-4

, two of the 
exponential functions have high damping ratios (40.6% 
and 23.2%). The higher value operates in the first half a 
cycle of the response. Damping ratios for dry sand 
between 20% and 25% and shear strains in the order of 
γmax = 20.0x10

-4
 have been reported by other researchers 

(e.g. Zambelli et al. 2006). However, previous 
measurements are performed for at least one cycle of 
excitation. As indicated before, the damping ratios 
presented for the free-decay method are not corrected by 
EMF damping; this damping increases with decreasing 
resonant frequency and material damping (Cascante et al. 
2003). 

During the unloading phase, resonant frequencies 
increased and the damping ratios decreased according to 
the decrease in shear strain levels. Two and three 
exponential functions are required to model the free-
decay response at medium shear strains. At the end of 
the loading phase, the dry-sand specimen is stiffer than at 
the beginning of testing because of the reduction in void 
radio and change in fabric during loading. The increase in 
stiffness is evidenced by the 24% increase in the main 
resonant frequency (tests U4 and L1) and the 7% 
decrease in the damping ratio 

Figure 5(a) presents the magnitude of the Fourier 
spectra for all tests during loading. The nonlinear behavior 
(decrease in resonant frequency, increase in damping 
ratio) is clearly shown when the shear strain increases 

from γmax = 0.13x10
-4 

to γmax = 16.0x10
-4

.  
For low strain levels (black solid curves), only one 

resonant peak is observed. A second resonant frequency 
is clearly observed in the L5 test. The resonant peak 
widens as the shear strain increases because of the 
increase in damping ratio. This effect is accentuated when 
the shear strain increases (tests L7-L9). When 

γmax>7.0x10
-4

, a well defined second resonant peak is 
observed at a frequency of 65 Hz. 

The magnitude Fourier spectra for the unloading 
phase are shown in Figure 5(b). As expected, the 
resonant frequency increases and the damping ratio 
decreases when the maximum shear strain decreases. In 
general, the results from the magnitude Fourier spectra 
are in agreement with the dynamic characteristics 
obtained by the CEM.   



 

The variation of damping ratio with the maximum 
shear strain during loading and unloading conditions is 
presented in Figure 6. The A −	�stu curves obtained 
using the SDOF model (time domain) and the transfer 
function method (frequency domain) are similar for shear 

strains γmax>10
-4

; because the EMF effect is stronger at 
low strain levels. The CEM predicts higher damping ratios 
for the fundamental frequencies because it is able to 
evaluate the damping ratio in less than one cycle of the 
free-decay response. The difference between the CEM 
and the SDOF method increases from 9% to 59% as the 
shear strain level increases. The damping ratios from the 
CEM for the higher frequency components are closer to 
the correct values (transfer function results) because the 
EMF effects decrease with the increase in resonant 
frequency. 

The reduction in damping ratio with frequency 
indicates that the CEM can be potentially used to study 
frequency effects in dynamic soil properties. This potential 
use is also indicated in Figure 7; which shows that the 
shear stiffness of the soils specimen increases with 
frequency as reported in previous studies (Khan et al. 
2008, 2010, Zambelli, et al.2006).  

Figure 7(a) shows the degradation curves for the 
shear wave velocity. In general, the degradation curves 
from the transfer function and free vibration methods are 
similar (maximum difference of 15%) for shear wave 
velocities computed for the main frequencies because the 
effect of the EMF damping on wave velocities is not 
significant. Shear wave velocities computed for high 
frequency components at low shear strains follow the 
degradation trend of the main frequency component. 
However, the high frequency components at medium 
shears trains (tests L5, L6, and L7) show greater shear 
wave velocities. This behavior is in agreement with 
previous observations showing that the sand specimen 
becomes stiffer after the application of high strain level 
excitations. 

The �� − ���� curves for unloading condition are 
presented in Figure 7(b); which includes the higher 
frequency components at low and medium strain levels, 
for loading and unloading conditions. Shear wave 
velocities for the main and high frequency components 
(including loading condition) show a similar degradation 
patterns. The shear wave velocities from the CEM are in 
general higher than the transfer function results; this 
effect may be related to frequency or number of cycles 
effects and requires further investigation. The unloading 
shear wave velocities increased up to 20% with respect to 
the loading condition. 
 
5.2 Isotropic confinement {P = 100 kPa 
 
The results for a confinement of 100 kPa are presented 
only for the loading condition because the results from the 
unloading condition are similar to the results presented for 
the confinement of 41 kPa. A total of nine free-vibration 
and transfer function tests are performed for shear strain 

levels between γmax = 6.6x10
-6 

and γmax = 6.0x10
-4

. The 
magnitude spectra for all tests are shown in Figure 8. At 
low strains, the resonant frequency increases by a factor 
of 1.27 when the confinement is increased from 41 kPa to 

100 kPa; this increase corresponds to an exponent 
b=0.27 for the velocity-confinement relationship (wx =E{�); which is typical for the tested sand (Cascante and 
Santamarina 1996).  

The damping ratio as function of the maximum shear 
strain is presented in Figure 9(a). The decrease in 
damping at low-strain levels with confinement is also 
typical for the tested sand. As indicated before, the 
damping ratios for the high frequency components are 
smaller than the corresponding values for the main 
frequency component because of the EMF effect. As the 
EMF damping decreases with an increase damping ratio, 
the difference between the CEM and the transfer function 
results decreases. The damping ratio obtained from the 
SDOF model is 12% smaller than the corresponding value 
estimated from the CEM for γ�	
 ≈ 6.0 × 10��, increasing 
up to 80% at large strains (γ�	
 ≈ 3.5 × 10�|). 
 

 

 
Figure 1. Magnitude spectra for loading (a) and unloading 
(b) RC tests  

The degradation curve of shear wave velocity is 
presented in Figure 9(b). The maximum difference 
between the shear wave velocities from the transfer 
function and free vibration methods as well as the CEM is 
less than 2% for �stu ≈ 1.0 × 10��, and 10% for �stu ≈



 

3.6 × 10�|. As expected, because the EMF effects in the 
resonant frequency are small and the fabric of the 
specimen is less perturbed at higher confining pressures. 
Small fabric changes are also confirmed by the 
agreement between the shear wave velocities of high and 
main frequency components.  
 
 

 
Figure 2. Damping ratio against maximum shear strain for 
loading (a) and unloading (b) conditions  

 
6 CONCLUSIONS 
 

This paper presents a new methodology for the 
dynamic characterization of soils using the free-decay 
response in RC testing. The new methodology is based 
on representing the free-decay response as a 
combination of damped exponential functions (complex 
exponential method, CEM). The use of the CEM is 
demonstrated on a dry-sand specimen with artificially 
increased damping (EMF damping) to cover a wider 
range of damping ratios with one specimen. The CEM is 
used to measure resonant frequencies and damping 

ratios of the dry-sand specimen at different shear strain 

levels (γmax = 6.6 x10
-6

 up to γmax = 1.52x10
-3

).  
The experimental results show that the damping ratio 

is underestimated up to 80% at large shear strain levels 
when the traditional SDOF  model is used. The CEM can 
be used to measure high damping ratios for the 
fundamental frequencies because it is able to evaluate 
the damping ratio in less than one cycle of the free-decay 
response; unlike the standard SDOF model. 

The new methodology can be successfully used to 
measure the degradation curves of shear wave velocity 
and damping ratio using free-decay tests; which minimize 
the number of cycles imposed on the specimen and thus 
the disturbance of the initial conditions of the specimen 
during testing. The specimen disturbance introduced 
during large-strain RC testing using the transfer function 
method is evidenced by the increase in shear wave 
velocity and the decrease of damping ratio, especially at 
low confinements. 
 
 

 
Figure 3. Shear wave velocity against maximum shear 
strain for loading (a) and unloading (b) conditions  



 

 
Figure 8. Fourier magnitude spectra for loading 

 
 

Figure 9. (a) Damping ratio and (b) shear wave velocity 
against maximum shear strain  
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